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Abstract

This paper examines the economic impact of COVID-19 in an equilibrium framework.

Our model combines two ingredients: (i) beliefs-dependent preferences for economic dy-

namics and (ii) stochastic SEIRD model with unpredictable birth and vaccine discovery

events for disease propagation. We estimate the model based on economic time series and

COVID-19 data. We show it explains the behaviors and levels of the S&P 500, the index

volatility, the unemployment growth rate, the consumption growth rate and the number of

new cases during the recent outbreak, while providing a good match for 25 unconditional

moments of economic time series. Beliefs-dependency emerges as a critical ingredient for

this comprehensive explanation of short term dynamics during the COVID-19 outbreak

and of long run statistical properties.
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1. Introduction

The COVID-19 outbreak challenges economic theory on several grounds. It is characterized

by a sharp decline in the consumption growth rate followed by a quick reversal. It features a

rapidly declining stock market followed by a slower increase to levels commensurate with initial

values. It displays episodes of large and fluctuating volatility in the market. This paper seeks to

explain the magnitudes and patterns of these short run empirical regularities in an integrated

epidemic-economy model consistent with moment properties of long run economic time series.

The outbreak took markets across the world by surprise. Although data from China showed

clear and early evidence of rapid propagation and associated economic damage, markets initially

failed to react, discounting the possibility of contagion across regions and continents. The

rapid decrease in the US market, for instance, began on February 20, several months after the

epidemic started to rage in China. The S&P500 reached its trough on March 23, about 30%

below average levels during the first two months of 2020. The index took nearly 5 months to

recover its February 20 level. In parallel, the VIX, a measure of market volatility, went from

15.56 on February 20 to a peak of 82.69 on March 16. It then progressively decreased to 24.52 on

June 5, before spiking at 40.79 on June 11. A second spike occurred on September 3 following

a short-lived downward adjustment. It has since evolved in the 25-40 range. Markets in

other countries have experienced similar patterns although at different dates and over different

periods.

The goal of this paper is to explain these phenomena, more specifically levels and patterns

that have characterized US markets. A key question is whether the empirical evidence associ-

ated with COVID-19 is consistent with the predictions of a “finely-tuned” asset pricing model.

By finely-tuned, we mean an asset pricing model explaining the long run behavior of financial

markets, i.e., outside epidemic states. Given such a model, questions pertaining to the origins

of economic fluctuations can be addressed. Are level adjustment patterns and volatility bursts

the result of certain policy decisions or of natural disease propagation mechanisms? Do they

reflect behavioral responses of economic agents? Are they tied to events unrelated to COVID-
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19? Answers to these question may help to provide perspective on the scope and effectiveness

of policy making.

For these purposes, we use the model with beliefs-dependent risk aversion (BDRA) in

Berrada, Detemple and Rindisbacher (2018) as a starting point. This choice is motivated

by the overall performance, static and dynamic, of the model. On the static front it provides

a good match for 25 moment condition, e.g., unconditional estimates of the equity premium,

stock market volatility and correlations between stock returns and growth rates of consumption

and dividends. On the dynamic front it has attractive properties, e.g., spikes in model-implied

recession probabilities coincide with NBER recession periods, model volatility tracks realized

volatility, and the equity premium displays countercyclical behavior.

First, we extend the model to incorporate short term dynamics associated with a pandemic.

This extension accounts for the unpredictable nature of pandemic events and vaccine discov-

eries, and for mitigating governmental policies. Pandemic uncertainty is modelled through a

non-recurrent Markov chain with three possible regimes: no pandemic, pandemic and vaccine.

Although the extension is built around the SEIRD model, any alternative pandemic prop-

agation mechanism can be readily substituted without affecting the solution procedure and

the main structural results. Of particular note is the fact that the extension produces closed

form solutions for equilibrium quantities, including stock prices and volatilities, in spite of the

unpredictability associated with the pandemic uncertainty.

Second, we estimate the model based on COVID-19 data, S&P 500 level and volatility data

and long run time series for consumption, dividends, macro aggregates, and others. Estimation

is carried out in two stages. In the first stage, the pre-pandemic stage, the economic model

is estimated based on 25 moment conditions. Relative to prior literature based on the BDRA

model, the estimation uses an augmented data set from 1957 to 2019. In the second stage, the

pandemic stage, the disease propagation parameters and the parameters governing its effects

on consumption, dividend and unemployment are estimated. Estimation is carried out so as

to minimize the mean squared distance between model-implied and observed S&P 500 level,
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index volatility, and number of new COVID-19 cases. The data set used for that purpose goes

from January 2020 to July 2020.

Third, we document the performance of the model. There are two aspects. We first show

that the model performs well regarding the quantities that were targeted in the estimation.

Model-implied statistics are close to their empirical counterparts, both during the pre-pandemic

period and the early stages of the outbreak. Pre-pandemic, the estimated model provides a

good fit for 25 targeted moment conditions, confirming the results in Detemple et al (2018)

for the longer data set. Intra-pandemic, it closely matches the number of new cases and the

variations in volatility recorded during the COVID-19 outbreak, and it displays the asymmetric

V-shape pattern of the S&P 500 while matching the trough. More significantly, we then show

that it performs well relative to quantities that were not targeted in the estimation procedure,

e.g., aggregate consumption, unemployment, and recessions. Specifically, it closely matches

the level of the unemployment growth rate during the outbreak, and provides a good match

for the consumption growth rate. The model-implied recession probability increases during the

COVID-19 recession period declared by the NBER, and decreases immediately after it. Finally,

it displays the behavior exhibited by a rolling average of the dividend growth rate, albeit with

a lead. Crucially, BDRA is necessary for explaining the patterns observed in the data.

The paper relates to three branches of the literature. First, it generalizes recent contribu-

tions seeking to examine the impact of pandemics on equilibrium asset prices, e.g., Detemple

(2022). It differs in that it (i) integrates an epidemiology propagation model into the model

with BDRA preferences, (ii) allows for unpredictable events such as the outbreak of a pandemic

and the discovery of a vaccine, (iii) includes volatility and correlations in the analysis and fo-

cuses not only on patterns but also levels, and (iv) estimates a version of the model allowing

for time-dependent contamination rate and examines its performance. The estimated model

fits the data well: on the economic front, it explains the magnitudes and patterns of volatility

variations, unemployment and consumption fluctuations and S&P 500 adjustments during the

COVID-19 outbreak.
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Second, it contributes to the general equilibrium asset pricing literature. It extends, in

particular, the BDRA model in Berrada, Detemple and Rindisbacher (2018) showing that

market value and volatility inherit new components tied to the likelihood of occurrence of an

outbreak and the likelihood of a vaccine discovery. Equilibrium formulas obtained are explicit

allowing for easy estimation and simulation. It also complements earlier studies such as Merton

(1973), Breeden (1979) and Cox, Ingersoll and Ross (1985), by incorporating an unexpected

epidemic phenomenon into an equilibrium valuation framework.

Third, it connects to the growing literature dealing with the COVID-19 outbreak. Recent

contributions have documented the empirical impact on the market, e.g., Gorsuch and Koijen

(2020) and volatility, e.g., Cheng (2020). The present paper explains this empirical evidence,

along with other aspects, in an equilibrium setting. It shows in particular that BDRA is essential

for rationalizing the data. Other recent articles examine the role and impact of mitigation

policies, e.g., Eichenbaum et al (2021), Jones et al (2021) and Hong et al (2021). The first

study investigates the implications of individual decisions and government policies for disease

propagation mechanisms and economic aggregates dynamics. The second one incorporates

similar elements, but focuses on the implications of inefficient work-at-home policies, taking

account of learning-by-doing and heterogeneity across sectors. The last one focuses on optimal

mitigation policies of firms in a partial equilibrium setting with stochastic transmission rate,

unpredictable vaccine discovery rate and fixed cost of mitigation. The scope of our contribution

differs as we explain short run dynamics during the COVID-19 outbreak along with the long

run behavior of economic variables in a setting with endogenous stochastic discount factor,

unpredictable economic regimes and unpredictable pandemic events.

Section 2 presents the model and provides equilibrium formulas. Section 3 describes the

estimation procedure and examines the fit to the data, both long term and during the early

stages of the COVID-19 outbreak. Conclusions follow. Appendix A details the SEIRD model

under a shelter-in-place (SIP) policy. Proofs are in Appendix B. Complementary results are in

Appendix C.
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2. Economic and Epidemiology Model

We extend the BDRA model in Berrada, Detemple and Rindisbacher (2018) to account for

a pandemic outbreak triggered by an unpredictable initial infection event and a subsequent

unpredictable vaccine discovery event.

2.1. A Time-Dependent and Stochastic SEIRD Model

The epidemic propagation is assumed to be driven by a SEIRD model with time-dependent

infection rate β , unpredictable triggering event and unpredictable vaccination discovery event.

The population is split in five categories: susceptible ( S ), exposed ( E ), infectious ( I ), re-

covered (R ), and deceased ( D ). Let ps, pe, pi, pr, pd be the fractions in each categories, where

the sum equals 1 . The infectious population further splits in three groups: asymptomatic

pasyi , symptomatic mild psmi , and symptomatic severe pssi , so that pi “ pasyi ` psmi ` pssi .

The last two categories consist of mildly sick and severely sick individuals, respectively. We

assume pssi “ piλ , pasyi “ pip1 ´ λqλw , psm “ pip1 ´ λqp1 ´ λwq where fractions λ and

λw are constants. Before the initial infection event, ps “ 1 and pe “ pi “ pr “ pasyi “ 0 .

At the initial infection event date τ0 , the infectious population jumps up and the susceptible

population down: ∆piτ0 ą 0 and ∆psτ0 “ ´∆piτ0 ă 0 . Thereafter populations evolve as

dps “ pµp1´ pd ´ psq ´ βptqpsp
asy
i ´ pνo ` ν1Vtqpsqdt(2.1)

dpe “ pβptqpsp
asy
i ´ pµ` σqpeqdt(2.2)

dpi “ pσpe ´ pµ` µi ` γqpiqdt(2.3)

dpr “ pγpi ´ µpr ` pν
o
`ν1Vtqpsqdt(2.4)

dpd “ µipidt(2.5)

where the indicator 1Vt indicates a pandemic has occurred and a vaccine has been found. The

parameter βptq is the disease transmission rate, a function of time, σ is the incubation rate,

γ the recovery rate, νo is the natural immunity rate, and ν is the vaccination rate upon
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discovery of a vaccine. The birth and natural death rates µ are assumed to be equal, hence

ensuring a stable population in the absence of disease mortality. Incremental disease mortality

is µi , and individuals who die as a result of the pandemic are in D . All parameters, except

for βptq are constants. The specific form of βptq is described in Section 3.2.1.

A policy intervention such as shelter-in-place (SIP) modifies the dynamics as follows. First,

upon implementation, it introduces an outflow at rate q , called the compliance rate, in each

of the populations above to corresponding sheltered populations pQs , p
Q
e , p

Q
i , p

Q
r , p

Q
d , identified

by the superscript Q . Second, upon lifting (LIFT) of the policy, it induces a reverse flow from

sheltered populations to those that are not. This reverse compliance rate is q2 . In the sequel

we refer to this model as the SEIRD-SIP-LIFT model. Details of the model can be found in

Appendix A.

2.2. Regimes, Consumption, Dividends, and Information

We assume there are six regimes: expansion, recession, boom, no pandemic, pandemic and

vaccine. The first three regimes are unobservable. They are the outcomes of a Markov chain

smt with three states, recession ( smt “ e1 ), expansion ( smt “ e2 ) or boom ( smt “ e3 ), where ek

is the 3ˆ 1 -dimensional kth unit vector. The last three are observable and are the outcomes

of an independent Markov chain set with three states, no pandemic ( set “ e1 ), pandemic

( set “ e2 ) or vaccine ( set “ e3 ). The pandemic Markov chain is non-recurrent: it evolves from

state e1 , to e2 , then e3 , which is an absorbing state. The vaccine event 1V “ 1 is triggered

when set “ e3 . In this event, the dynamics of the susceptible and infectious populations depend

on the vaccination rate ν as described in ps and pr . To simplify derivations we assume the

pandemic is a one-time event, so does not subsequently reoccur: set “ e3 is an absorbing state.

To model the Markov chains, consider independent continuous-time switching process psm, seq

dsmt “
´

Λmdt` dÑm
t

¯1

smt´(2.6)

dset “
´

Λedt` dÑ e
t

¯1

set´(2.7)
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where dÑα
t “ dNα

t ´ Λαdt for α P tm, eu and Nα is 3 ˆ 3 -matrix valued Poisson pro-

cesses with independent off-diagonal elements, diagonal elements dNiit “ ´
ř

j‰i dNijt , and

intensity matrix Λα with diagonal elements Λα
ii “ ´

ř

j‰i Λ
α
ij . Each process takes values

sαt P tei; i “ 1, 2, 3u where e1i denotes the ith unit vector. Define the different states as fol-

lows: expansion smt “ e1 , recession smt “ e2 , boom smt “ e3 , no pandemic set “ e1 , pandemic

set “ e2 , pandemic and vaccine set “ e3 . A pandemic arises with intensity Λe
12 . As the devel-

opment of a vaccine takes some time Λe
13 “ 0 . If there is a pandemic Λe

21 “ 0 . The vaccine

enters development and becomes available with intensity Λe
23 . Once it becomes available the

pandemic ends, Λe
31 “ Λe

32 “ 0 . The initial event triggering the pandemic is determined by

the jump of set to e2 . The vaccine event resolving the pandemic is determined by the jump

to e3 .

The state variables in the model are pC,G, Y q where C is aggregate consumption and

pG, Y q are orthogonalized variables constructed from consumption, dividend and unemploy-

ment; see Appendix B for details. The model for pC,G, Y q is

dCt
Ct

“

ˆ

µCo ps
m
t q ` A

C
psmt q

µp
e
wpt, set q

pewt
1Et

˙

dt` σCdWC
t(2.8)

dGt

Gt

“

ˆ

µGo ps
m
t q ` A

G
psmt q

µp
e
wpt, set q

pewt
1Et

˙

dt` σGdWG
t(2.9)

dYt
Yt

“

ˆ

µYo ps
m
t q ` A

Y
psmt q

µp
e
wpt, set q

pewt
1Et

˙

dt` σY dW Y
t(2.10)

where ACpsmt q, A
Gpsmt q, A

Y psmt q are sensitivity parameters capturing the response to the epi-

demic, µ
pew
t is the drift of the effective labor force pew generated by the SEIRD model (see end of

next section for details), and 1Et is the indicator of an epidemic outbreak Et “ tset P te2, e3uu .

The processes WC ,WG,W Y are independent Brownian motions representing economic shocks.

The terms
`

µCo ps
m
t q, µ

G
o ps

m
t q, µ

Y
o ps

m
t q
˘

represent the respective drifts in the absence of an epi-

demic. The terms involving
µp
e
w pt,set q

pewt
capture the impact of the pandemic on the expected

growth rates of pC,G, Y q . These components kick in either when an outbreak is in process

set “ e2 , or when it has already occurred and a vaccine has been found set “ e3 . The model
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(2.8)-(2.10) is a generalization of the reduced form suggested by the pandemic production model

in Detemple (2022); it generalizes that specification by allowing for additional state variables

pG, Y q and for a dependence on the economic regime sm .

2.3. Beliefs-Dependent Risk Aversion: BDRA(K,K)

To model economic processes during a pandemic, we extend the BDRA(K,K) model in Berrada,

Detemple and Rindisbacher (2018). The model has K unobserved economic regimes smk : k “

1, ..., K , K preference parameters Rk : k “ 1, ..., K and uses consumption C , orthog-

onalized dividends G and orthogonalized macro variables Y as information sources. Let

Pk : k “ 1, ..., K be the regime probabilities based on public information. Instantaneous utility

of consumption, for population j , is ujpct, tq “ e´βut
řK
k“1 Pkta

Rk
j c1´Rk

t {p1 ´ Rkq where βu

is a subjective discount rate and aj ă 1 is a discount factor depending on the health and

employment status of the population. The coefficients Rk are parameters of the risk aversion

function, as explained below. Marginal utility of consumption is

(2.11) ujcpct, tq “ e´βut
K
ÿ

k“1

Pkt

ˆ

ct
aj

˙´Rk

, j P ts, e, i, ru

and depends on the ratio of consumption to discount factor. Relative risk aversion is Rj “

řK
k“1 qjktRk where qjkt “

Pkta
Rk
j c

´Rk
t

řK
k“1 Pkta

Rk
j c

´Rk
t

, different across populations for a given consumption

level ct . As shown in the next section, equilibrium is completely determined by the dynamics

of pC,G, Y, P q , such that

(2.12) dPkt “ Pkt
`

µpktdt`∆C
ktdν

C
t `∆G

ktdν
G
t `∆Y

ktdν
Y
t

˘

where µpkt “
řK
j“1 Pjtλjk{Pkt with λjk the transition intensity from regime j to k , and for

α P tC,G, Y u

(2.13) ∆α
kt “

µαk ´ µ̂
α
t

σα
, dναt “

1

σα

ˆ

dαt
αt
´ µ̂αt dt

˙

,
dαt
αt

“ µαpstqdt` σ
αdWα

t
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where µαpstq “ µαpsmt , s
e
t q “ µαo ps

m
t q ` Aαpsmt q

µp
e
w pt,set q

pew
1Et , µαk “ µαpsmt , s

e
t qsmt “ek , and µ̂αt “

ř

k µ
α
kPk . The processes νC , νG, νY are informational innovations associated with the under-

lying Brownian motions.

We also assume the supply of labor by households is inelastic. Aggregate labor supply

is L̄ “ 100 in the absence of an epidemic. During an outbreak available supply is limited

to individuals who do not exhibit symptoms: the workforce is pw “ ps ` pe ` pasyi ` pr . If

SIP is implemented, and a fraction h of quarantined individuals is able to work at home,

the effective labor supplied is pew “ pw ` ωpqw where ω ă 1 is an efficiency factor and

pqw “ pqs,h ` pqe,h ` pq,asyi,h “ h ppqs ` p
q
e ` p

q,asy
i q is the sheltered population able to work. The

effective workforce impacts the growth rate of aggregate variables as described in (2.8)-(2.10).

The model combining the pandemic and economic dynamics described above is called the

BRDA-SEIRD-SIP-LIFT model.

2.4. Equilibrium

The consumption demand of population j is cjt “ ajIpHtq for a function I commmon

to all populations and where Ht “ yξt{at is the normalized state price density. Aggregate

demand is pactIpHtq where pact “
ř

jPts,e,i,ru pjtaj .1 In equilibrium pactIpHtq “ Ct so that

IpHtq “ C{pact . The equilibrium allocation satisfies cjt{aj “ IpHtq “ Ct{p
a
ct , which is identical

across populations.

Let τ0 ” inftv ě 0 : ∆N e
12v ą 0u be the time marking the beginning of the pandemic.

At that time the infectious population becomes positive, ∆piτ0 ą 0 , and all quantities related

to pi become positive as well. At t “ τ0 , the adjusted fraction of consumers jumps from

pact´ “ as “ 1 to pacτ0 “
ř

jPts,e,i,ru pjτ0aj .

Equilibrium is then given by

Proposition 2.1. Consider the BDRA-SEIRD-SIP-LIFT model. The equilibrium stochastic

1Subgroups of populations can have difference discounts for consumption, reflecting their economic status or
their health status. The variable pac is adjusted as needed to capture these effects.
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discount factor (SDF) is

(2.14) ξt “
K
ÿ

k“1

e´βt
ˆ

Ct
pact

˙´Rk

Pkt.

where ξ0 “ 1 . The equilibrium interest rate and market prices of risk are

rt “β `

˜

K
ÿ

k“1

Rkqkt

¸

ˆ

µ̂Cot `

ˆ

pACt
µp

e
wpt, set´q

pewt
´
µp

a
c pt, set´q

pact

˙

1Et

˙

(2.15)

´
1

2

˜

K
ÿ

k“1

Rkp1`Rkqqkt

¸

pσCq2 ´
K
ÿ

k“1

µPktqkt `
K
ÿ

k“1

Rkqktpµ
C
k ´ µ̂

C
t q ` Λe

12θ
J
t´

(2.16) θCt “

˜

K
ÿ

k“1

Rkqkt

¸

σC ´
K
ÿ

k“1

qkt∆
C
kt, θGt “ ´

K
ÿ

k“1

qkt∆
G
kt

(2.17) θYt “ ´
K
ÿ

k“1

qkt∆
Y
kt, θJt´ “

K
ÿ

k“1

e´βt pCtq
´Rk Pkt

řK
k“1 e

´βt pCtq
´Rk Pkt

´

1´ ppactq
Rk
¯

where µp
a
c pt, set q is the drift of the adjusted population of consumers, µ̂Cot “

ř

k Pktµ
C
ok is the

expected value of the first component of the consumption growth rate, pACt “
řK
k“1 PktA

C
k is the

expected value of ACpsmq , qkt “
PktpCt{p

a
ctq
´Rk

ř

k PktpCt{p
a
ctq
´Rk

is the equilibrium pricing measure, and θJt´

is the market price of jump risk. The interest rate has a jump premium component θJt´Λ12 .

Remark 2.2. The SDF is marginal utility evaluated at the equilibrium consumption allocation.

Note that it is discontinuous: it jumps down at τ0 , and the relative jump size, i.e., the negative

of the market price of jump risk, is

(2.18)
∆ξτ0
ξτ0´

“

řK
k“1C

´Rk
τ0

Pkτ0

´

`

pacτ0
˘Rk

´ 1
¯

řK
k“1C

´Rk
τ0 Pkτ0

ă 0.

where pacτ0 “ 1 `∆ipλi ` λsai ´ 1q and ∆i is the size of the jump in pi at τ0 . Coefficient

λs “ p1 ´ λqp1 ´ λwq is the fraction of symptomatic mild in the infectious population, while
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λi “ p1´ λqλw is the fraction of asymptomatic. The expected relative jump is

(2.19) Eτ0´

„

∆ξτ0
ξτ0´



“

řK
k“1C

´Rk
τ0

Pkτ0

´

`

pacτ0
˘Rk

´ 1
¯

řK
k“1C

´Rk
τ0 Pkτ0

Λe
12dt ă 0.

.

The epidemic impact on the SDF is through pact , the adjusted consuming population.

A decrease in the fraction of consumers increases consumption per head, hence reduces the

SDF. There are three effects on equilibrium coefficients. The first, encapsulated in the term

ÂCt µ
pew
t {p

e
w´µ

pac
t {p

a
c , is structural in nature. It represents the net impact on the expected output

growth rate and the growth rate of the consuming population. The second, arises through the

adjusted probabilities qkt which depend on cjt{aj “ Ct{p
a
ct . The third arises through the jump

associated with the initial infection event. Variations in the adjusted consuming population

pact combine with consumption fluctuations to determine their behavior over time. The interest

rate level and evolution reflect all effects. Market prices of risk reflect the second and third

effects.

The next proposition extends the stock valuation formula in Berrada, Detemple and Rindis-

bacher (2018) to the epidemic context.

Proposition 2.3. Define the matrix Υpt, set q as in Proposition 5.1 in the Appendix and suppose

that its elements Υijpt, s
e
t q are finite for all pairs pi, jq . The stock price is then given by

(2.20) St “ Et

„
ż 8

t

ξt,sDsds



“ DtZ
1

tΥpt, s
e
t qPt

where Etr¨s is the conditional expectation and Zt “ qkt{Pkt is the density of the probability mea-

sure q with respect to P . The stock market return volatility is σSt “
a

pσSCt q2 ` pσSGt q2 ` pσSYt q2
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where

(2.21)

»

—

—

—

—

–

σSCt

σSGt

σSYt

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

ρσD ` σSCRt ` σSCGt

a

1´ ρ2σD ` σSGGt

σSY Gt

fi

ffi

ffi

ffi

ffi

fl

and, using diagKpvq for the diagonal K ˆK matrix with vector v on the diagonal,

(2.22) σSCRt “ Z 1tdiagKr´Rkσ
C
s

ˆ

Υpt, set´q

Z 1tΥpt, s
e
t´qpt

´ IK

˙

pt,

(2.23) σSαGt “ Z 1t

ˆ

Υpt, set´q

Z 1tΥpt, s
e
t´qpt

´ IK

˙

diag r∆α
kts pt, α P tC,G, Y u.

The component σSCRt is the volatility due to consumption uncertainty, and σSCGt , σSGGt , σSY Gt

are the volatility components associated with beliefs uncertainty. The correlation between the

stock return and the consumption growth rate (resp. orthogonalized dividend growth rate) is

ρSCt “ σSCt {σSt (resp. ρSDt “ σSDt {σSt ). Correlations are stochastic.

Remark 2.4. Note that the stock price, its volatility coefficients, and the market price of jump

risk are discontinuous. They jump when the pandemic regime materializes. In contrast, market

prices of diffusion risks are independent of the pandemic state variable set . The equity premium,

as the product of market prices of risk and volatility components, is discontinuous as well.

Remark 2.5. If st “ e1 , i.e,. if the pandemic has not yet been triggered, then the price has

the additive decomposition,

(2.24) St “ DtZ
1
tΥ

o
1Pt `DtΛ

e
12Z

1
tΥ

e
1ptqPt.

where the first component, DtZ
1
tΥ

o
1Pt , corresponds to the price if the pandemic never occurs and

DtΛ
e
12Z

1
tΥ

e
1ptqDt is the pandemic premium, i.e., the present value of the gains in the event a

pandemic occurs. The pandemic premium is proportional to the switching intensity Λe
12 and the

dividend level Dt . The same additive decomposition holds for volatility coefficients, replacing
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Υ by Υo
1 and Λe

12Υe
1ptq , respectively. These expressions follow because Υ “ Υo

1 ` Λe
12Υe

1ptq

where, for α P to, eu , Υα
1 is generated by Gα

1 (see (5.6)-(5.8) for details).

3. Empirical Results

We proceed in two stages. First we estimate the model without pandemic effects, based on

pre-pandemic data. Second, we estimate pandemic-related parameters, using data during the

COVID-19 outbreak.

3.1. Estimating the BDRA Model: Before the Pandemic

The estimation for the BDRA(K,K) model without pandemic effects follows the approach in

BDR (2018). Estimation is based on longer time series with 5 additional years of data.

3.1.1. Data Description

The estimation is based on quarterly data from January 1957 to December 2019. The per

capita consumptions of nondurable goods ( Cn,t ) and services ( Cs,t ) are obtained from the

Saint-Louis Federal Reserve Bank. Consumption growth is defined as

(3.1) ln
Cs,t`1 ` Cn,t`1

Cs,t ` Cn,t
,

Other time series are constructed as in Beeler and Campbell (2012). Using the CRSP value

weighted return indexes including dividends ( vwretdt ) and excluding dividends ( vwretxt )

gives the dividend series Dt ,

(3.2) Pt`1 “ Pt p1` vwretxt`1q , Dt`1 “ Pt`1

„

1` vwretdt`1

1` vwretxt`1

´ 1



.

The price-dividend ratio (PDR) is obtained by dividing the current price index level by the

sum of the 12 previous months’ dividends. All further computations and estimations use the
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log of the PDR. Quarterly returns are constructed from log monthly returns. Real returns are

obtained by adjusting for inflation using the seasonally adjusted consumer price index (obtained

from the Saint-Louis Federal Reserve Bank). Quarterly series of ex-ante real three-month rates

and real ten-year rates are constructed from monthly series of nominal yields as in Beeler and

Campbell (2012). The ex-post real rate is obtained by subtracting the realized inflation from

the observed three-month treasury bill rate. It is then regressed against the average quarterly

log inflation over the previous year πt´12,t (annual log inflation divided by four) and the three-

month nominal yield y3,t ,

(3.3) y3,t ´ πt,t`3 “ β0 ` β1y3,t ` β2πt´12,t ` εt`3.

The ex-ante real rate is then defined as β̂0 ` β̂1y3,t ` β̂2πt´12,t . The same procedure is used,

with an adjustment for the time period, for the ten-year ex-ante real rate. 2

The information variable in Eq. (2.10) is defined as the unemployment rate (UE)

It “ UEt,

The data for UE is obtained from the Saint-Louis Federal Reserve Bank.

3.1.2. Estimation Procedure

Model parameters are estimated using a just identified sequential GMM procedure pioneered

by Ogaki (1993). The set of parameters is partitioned into subsets Θ “ Θ1 YΘ2 YΘ3 with

Θ1 ”
 

σC , σD, σI , ρ, ρIC , ρID
(

,

Θ2 ”
 

µC1 , µ
C
2 , µ

C
3 , µ

D
1 , µ

D
2 , µ

D
3 , µ

I
1, µ

I
2, µ

I
3, λ12, λ13, λ21, λ23, λ31, λ32, Rmin, β

(

,

Θ3 ” tR2, R3u .

2This procedure is also used by Harvey (1988) to test whether the real term premium can forecast recessions.
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The first subset, Θ1 , contains parameters of the covariance matrix of consumption, div-

idends and the information variable (unemployment). Parameter estimates are obtained by

matching corresponding sample moments. Given the constant volatility structure of state vari-

ables these estimates are equivalent to maximum likelihood estimates (MLE).

The second subset, Θ2 , determines the steady state behavior of the model. These param-

eters are estimated using sample analogs of the invariant theoretical counterparts.

Parameters in the third subset, Θ3 , do not affect the steady state equilibrium values, but

only the dynamics of equilibrium quantities. In order to address this part of the estimation

procedure, we rely on the extensive literature originating from Campbell and Shiller (1988)

that identifies a link between stock returns and PDR. We consider the following two moment

conditions (i) correlation between log simple returns and changes in log PDR, and (ii) correlation

between log simple returns and changes in log PDR lagged by one quarter. Given the estimates

for parameters in the subset Θ1YΘ2 , these two moments within the model use filtered values

of state variables to generate a sample path that depends on the unknown parameters in Θ3 .

Parameters in Θ3 are estimated by minimizing the squared error of deviations of these two

moments of sample paths within the model and in the sample.

Table 1 summarizes the moment conditions used in the estimation of the different sets of

parameters. Additional details and justification of this procedure can be found in BDR (2018).

3.1.3. Parameter Estimates and Model Performance

Table 2 shows that parameter estimates are close to their empirical values, and typically lie

within the 95% confidence bands or are close to the edges of these bands. Exceptions are

the mean 3-month and 10-year yields and the volatility of the 10-year yield. Relative to the

estimation results in BDR (2018), which is based on the shorter sample from 1957 to 2014, the

mean consumption growth rate is further away from its sample value.

Table 3 reports estimates for the drifts of consumption, unemployment, and dividends, and

for the preference parameters, in the three growth regimes. Patterns for the coefficients per-
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taining to consumption and unemployment are the same as in BDR (2018), with reduction in

some of the point values obtained. In contrast, dividend drift coefficients display an increasing

pattern, as opposed to the previous U-shape pattern, due to an increase in the estimate for

regime 2. The risk aversion function implied by estimates of preference parameters displays the

same inverted U-shape as in BDR (2018), but with a slight upward shift. Hence, the interpre-

tation of regime 2 as a recession regime is also maintained, even though the estimation did not

impose a priori restrictions on the ordering of regimes. Finally, standard deviation estimates

for consumption, dividend and unemployment are about the same, whereas the correlations

between dividend and consumption (positive), and dividend and unemployment (negative) are

both cut in half.

Overall, the results obtained based on the augmented sample 1957-2019 are consistent with

those in BDR (2018) for the period 1957-2014.
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Table 1: Moment conditions. The table lists the moment conditions used for the just identified

sequential GMM estimation of model parameters. Theoretical expressions for steady state

values are in Detemple et al (2018). Sample moments are based on standard sample statistics

for means, standard deviations, correlation, and auto-correlation coefficients. The operator

{CORRT,Θ3 rXt, Yts calculates the empirical correlation coefficient between Xt and Yt based

on model trajectories of length T as a function of parameters Θ3 .

Parameter estimation: moment conditions

Moment condition Invariant moment (definition) Sample moments

Covariance of state variables: Θ1 “
 

σC , σD, σI , ρ, ρIC , ρID
(

1. Vol. cons. σC
zSTDT r∆ logCts

2. Vol. div. σD
zSTDT r∆ logDts

3. Vol. unemp. σI
zSTDT r∆ log Its

4. Corr. cons., div. ρ {CORRT r∆ logCt,∆ logDts

5. Corr. cons., unemp. ρIC {CORRT r∆ logCt,∆ log Its

6. Corr. div., unemp. ρID {CORRT r∆ logDt,∆ log Its

Steady state values: Θ2 “
 

µC
1 , µ

C
2 , µ

C
3 , µ

D
1 , µ

D
2 , µ

D
3 , µ

I
1, µ

I
2, µ

I
3, λ12, λ13, λ21, λ23, λ31, λ32, Rmin, β

(

1. Exp. cons. µC
8 ` 0.5

`

σC
˘2

pET r∆ logCts

2. Exp. div. µD
8 ` 0.5

`

σD
˘2

pET r∆ logDts

3. Exp. unemp. µI
8 ` 0.5

`

σI
˘2

pET r∆ log Its

4. Log-PDR log S8

D8

pET rlogPDRts

5. Exp. 3-m. yield Y 8`0.25
8 τ “ 0.25 pET

“

Y t`0.25
t

‰

6. Exp. 10-y. yield Y 8`10
8 τ “ 10 pET

“

Y t`10
t

‰

7. Stock volatility σS
8

zSTD r∆ logSts

8. Volatility of 10-y. yield σY
8 pτq

pET

“

Y t`0.25
t

‰

9. Exp. excess return µS
8 ´ r8

pET r∆ logSt ´ rts

10. Corr. return, cons. ρS,C8 {CORRT r∆ logSt,∆ logCts

11. Corr. return, div. ρS,D8 {CORRT r∆ logSt,∆ logDts

12. Corr. 3-m. yield, cons. ρY,C8 pτq τ “ 0.25 {CORRT

“

Y t`0.25
t ,∆ logCt

‰

13. Corr. 3-m. yield, div. ρY,D8 pτq τ “ 0.25 {CORRT

“

Y t`0.25
t ,∆ logDt

‰

14. Corr. 10-y. yield, cons. ρY,C8 pτq τ “ 10 {CORRT

“

Y t`10
t ,∆ logCt

‰

15. Corr. 10-y. yield, div. ρY,D8 pτq τ “ 10 {CORRT

“

Y t`10
t ,∆ logDt

‰

16. Volatility log-PDR ratio σlog´PDR
8

zSTDT rlogPDRts

17. Corr. log-PDR, cons. ρlog´PDR,C
8

{CORRT rlogPDRt,∆ logCts

Path dynamics: Θ3 “ tR2, R3u

1. Corr. log-PDR, return {CORRT,Θ3
r∆ log PDRt,∆logSts {CORRT r∆ log PDRt,∆logSts

2. Corr. log-PDR, return (1 lag) {CORRT,Θ3
r∆ log PDRt´1,∆logSts {CORRT r∆ log PDRt´1,∆logSts
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Table 2: Moment conditions and confidence intervals. Model moment conditions are based on

stationary values and estimated parameters. Confidence bounds are obtained using the station-

ary bootstrap for weakly dependent data of Politis and Romano (1994). The 95% confidence

intervals are based on 1000 replications and optimal average blocksize.

Confidence Confidence
Model Data lower bound upper bound

Mean

Consumption growth 0.01336 0.01878 0.01619 0.02094
Dividend growth 0.00862 0.02089 0.00842 0.03150
Unemployment growth 0.00586 0.00492 -0.03042 0.02911

Log PDR 3.77885 3.61139 3.56689 3.66143
Excess returns 0.05318 0.05238 0.00914 0.09553
Mean 10-year yield 0.02919 0.02187 0.02083 0.02299
Mean 3-month yield 0.02968 0.00864 0.00691 0.01048

Volatility

Log PDR 0.16681 0.17046 0.15448 0.19169
Excess returns 0.21168 0.16792 0.14972 0.19018
10-year yield 0.02101 0.00902 0.00828 0.01004

Correlations

Stock returns / consumption 0.08920 0.24046 0.11367 0.36834
Stock returns / dividend 0.26655 0.09437 –0.04243 0.20755
10-year yield / consumption 0.12260 0.14894 0.00985 0.27520
10-year yield / dividend -0.04092 -0.17219 -0.27332 -0.06401
3-month yield / consumption 0.26685 0.25407 0.13769 0.36103
3-month yield / dividend -0.02821 -0.08680 -0.20495 0.04073
log PDR / consumption 0.26323 0.22340 0.08522 0.35540

Stock return and log(PDR) correlation

Contemporaneous 0.99716 0.96457 0.9402 0.9758
Lagged logpPDRq 0.06060 0.06030 -0.0707 0.2064
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Table 3: Estimated parameters (standard errors). GMM parameter estimates with standard

errors obtained from stationary bootstrap (Politis and Romano (1994)).

Growth regime

Normal Low High

Consumption
µC

1 µC
2 µC

3

0.00969 0.00572 0.03554
(0.0081) (0.0075) (0.0102)

Dividend
µD

1 µD
2 µD

3

0.00672 0.00746 0.01707
(0.0099) (0.0098) (0.0104)

Growth regime

Normal Low High

Unemployment
µUE

1 µUE
2 µUE

3

-0.00067 0.12653 –0.09982
(0.0332) (0.0460) (0.0424)

Preferences: risk aversion
R1 R2 R3

2.06340 2.5550 2.2416
(0.3788) (0.0983) (0.0133)

Preferences: subjective discount rate
β1 β2 β3

0.01000 0.01000 0.01000
(0.0021) (0.0021) (0.0021)

Standard deviations and correlations
Consumption Dividend Unemployment

Consumption 0.0092 0.0799 –0.3626
(0.0641) (0.1096) (0.2230)

Dividend 0.0799 0.0449 –0.1836
(0.1096) (0.0744) (0.1895)

Unemployment –0.3626 –0.1836 0.1214
(0.2230) (0.0.1895) (0.9587)

Infinitesimal generator
Normal Low High Steady state probabilities

Normal –0.07343 0.07343 3.859425 E-07 0.645
- (0.0148) (1.86 E-06)

Low 0.24417 –0.25736 0.01320 0.184
( 0.0343) - (0.0037)

High 0.01426 1.789710 E-07 –0.01426 0.170
(0.0046222) (1.70 E-06) -
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3.2. Estimating the BDRA Model: During the Pandemic

We now focus on the pandemic period, assuming that risk aversion parameters do not depend

on the pandemic regime, Rkps
e
t q “ Rk and parameters ACpsmt q “ AC , AGpsmt q “ AG are

constants across economic regimes. First, we complete the SIP-LIFT model by specifying the

transmission intensity. Second, we describe the estimation procedure for the pandemic-related

parameters. Last, we present the results and discuss performance.

3.2.1. Transmission Intensity Specification

We consider a version of the SIP-LIFT model with time-decay and threshold effects in the

transmission intensity β . We assume

(3.4) βt “ β0e
´κ0t1tďt1 ` β1e

κ1pt´tmq1t1ătďt2 ` β2e
´κ2pt´t2q1t2ăt

where t1, t2 are transmission intensity change dates, κ0, κ2 are decay rates respectively prevail-

ing up to the first date and after the second one, and κ1 is an expansion rate in the intermediate

period up to time t2 . The parameter β1 “ β0e
´κ0t1 is the value at t1 and β2 “ β1e

´κ1pt2´tmq

at t2 . The parameter tm P rt1, t2s cuts the intermediate period in two parts. From t1 to tm

the transmission intensity decreases, from tm to t2 it increases. This formulation captures

social distancing effects taking place as the epidemic propagates and disease mitigation rec-

ommendations by health authorities and governmental agencies. For instance, the dates t1, t2

might be associated with recommendations to implement and lift a SIP policy. The reversal of

decay during the period rt1, t2s captures weariness and overconfidence effects that may develop

during SIP.

3.2.2. Estimation Procedure for Pandemic Parameters

In light of Sections 2.1 and 3.2.1, and Appendix A, the set of pandemic propagation pa-

rameters is Θ4 “ tpi0 , β0, t1, t2, κ0, κ1, κ2, σ, γ, µi, q, q2u . In addition, we have parameters in
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Θ5 “ tA
C , AG, AY psmt q, ai, al, ω, hu governing the impact of the pandemic on the time series of

consumption, dividend and unemployment. Hence, the full set of pandemic-related parameters

to be estimated is Θ4 YΘ5 .

Estimation is based on the number of new COVID-19 cases, the level of the S&P 500 index

during the outbreak and a measure of the index return volatility. Data for new cases are from

the COVID Tracking Project.3 Volatility is proxied by the average squared total return on the

S&P 500 index computed over a 10 days rolling window. The sample period is January 1 2020

until August 7 2020, therefore covering the first and second waves of the COVID pandemic in

the US.4

All target quantities are available at daily frequency. Input quantities in the model, however,

are available at different frequencies. Unemployment, consumption and dividend are available

at monthly frequency and are held constant between observations. This results in innova-

tion processes that are updated at monthly frequency. The regimes conditional probabilities pt

therefore change at monthly frequency. The drift processes of unemployment, consumption and

dividend, are adjusted at daily frequency using the pandemic related effect Aαt ps
e
t q
µp
e
w pt,set q

pew
1E .

The stock price level and volatility are functions of the conditional probabilities, the consump-

tion and dividend level. They also depend on the volatility of the conditional probabilities

which are functions of the drift processes of unemployment, consumption and dividend. It fol-

lows that through the updating procedure of the drift processes driven by the pandemic model,

stock price level and volatility can also be updated at daily frequency. The entire process is

displayed in a diagram in Figure 1. The estimation is performed by minimizing the squared

distance between model implied and observed (i) stock volatility (ii) stock price level and (iii)

number of new COVID cases, all measured at daily frequency.

3See https://covidtracking.com/data/us-daily
4The quantitative easing program started in March 2020 with a significant inflation of the FED balance

sheet. There is strong empirical evidence that QE affected stock prices, but with a significant delay. We focus
on the immediate real effect of the pandemic and do not extend the analysis to a period where the market is
too heavily biased by QE.
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3.2.3. Parameter Estimates

The lower panel in Table 2 reports estimates of pandemic propagation and related policy

parameters in Θ4 . The initial transmission rate β0 “ 2.3110 is found to decay at rate

κ0 “ 3.8165 pre-SIP, decay/appreciate at rate κ1 “ 23.4286 during SIP, to finally decay at rate

κ2 “ 13.2838 post-SIP. Estimates of infection regime changes are respectively t1 “ 61.5119

and t2 “ 120.2494 , roughly in line with average times of SIP and LIFT implementations across

states. The pandemic birth time is estimated at τ0 “ 18.8987 , and the time marking an acceler-

ation of transmission during SIP is tm “ 66.4458 . The mean latency duration is σ´1 “ 12.7294

days, and the mean infectious duration γ´1 “ 12.0767 days. Both values are consistent with

estimates reported during the initial phases of the COVID-19 outbreak. The fraction of severe

and asymptomatic cases are estimated at λ “ 0.0334 and p1 ´ λqλw “ 0.5772 , respectively,

again consistent with reported values. The disease mortality parameter µi “ 2.22 ˆ 10´5 is

commensurate with COVID-19 mortality statistics. As might be expected, the natural im-

munity rate νo “ 4.7 ˆ 10´6 is extremely low. Finally, the migration rates into and out of

lockdown are respectively q “ 0.080184 and q2 “ 0.000849 . Compliance q is low because

some states never went into lockdown while others implemented SIP at various dates. In addi-

tion, the policy did not apply to essential workers. Reverse migration q2 is even lower because

businesses were slow to reopen or because firms continued operating using work-at-home.

The upper panel of Table 2 reports estimates of the economic effects of the pandemic on the

drifts of consumption, orthogonal dividend and orthogonal unemployment. The sensitivity of

consumption is estimated at ACpset q “ 5.2649ˆ10´3 , showing a low response to the propagation

via pew . The sensitivity of dividend is even lower at ACpset q “ 0.8880ˆ10´3 . Estimates of both

of these coefficients are positive indicating a negative impact as the growth rate of the working

population falls. In contrast the sensitivity of orthogonal unemployment, assumed to depend

on the state of the epidemic in the estimation, is negative in all of these states. Its greatest

magnitudes are in states set “ e1 and set “ e3 at respectively AY pe1q “ ´0.0315006 and

AY pe3q “ ´0.6988067 . Unemployment responds strongly to the growth rate of the workforce
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pre- and post-pandemic, regimes during which that growth rate does not vary much. At

AY pe2q “ ´0.0008576 , the response during the pandemic is weaker because the growth rate

exhibits a very strong negative response. The product of the two therefore produces a significant

impact during the outbreak. The efficiency of work-at-home is estimated at ω “ 0.7553 , and

the fraction of individuals working at home is h “ 0.9622 . The efficiency loss associated

with work-at-home can be attributed to frictions in the organization of work, the transmission

of information and the implementation of decisions and processes. Last, the consumption

discount factors of ill and laid-off individuals are estimated at ai “ 0.9625 and al “ 0.99999 ,

respectively. Individuals stricken by the pandemic shift their consumption basket towards

medical goods and services, leading to a small reduction in overall expenditures. Laid-off

individuals consume at nearly the same rate during the pandemic due to government subsidies

and related support schemes.

3.2.4. Model Performance: Targeted Variables

We now examine the performance of the BDRA-SEIRD-SIP-LIFT model relative to variables

that were targeted in the estimation procedure, i.e., the number of new COVID-19 cases, the

volatility of the S&P 500, and the level of the S&P 500.

Figure 2 shows that the estimated model stays close to the observed number of cases in

the data. The most significant deviation occurs toward the end of the wave of the outbreak,

between days 140 and 150 counting from January 1, 2020. The match during the second wave,

between days 160 and 220, is very close.

Figure 3 demonstrates that the SIP-LIFT model is able to replicate the rapid increase and

decrease in volatility that took place during the first wave of the COVID-19 pandemic as well as

the magnitude and inverted V-shape of the effect recorded. In comparison the standard BDRA

model without pandemic effect, called the base model hereafter, only generates an increase

in volatility with a significant delay, and of much smaller amplitude; see Figure 10. It is also

unable to reproduce the inverted V-shape of the volatility event. The reason for the discrepancy
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between the performances of the two models is because the base model reacts only when the

recession probability reaches a peak, whereas the pandemic model reacts immediately following

an increase in the number of COVID-19 cases. This discrepancy is examined in more details in

Section 3.2.6 below.

Figure 4 establishes that the BDRA-SEIRD-SIP-LIFT model is able to reproduce the be-

havior of the S&P 500 during the first two waves of the outbreak. The model generates the

asymmetric V-shape adjustment of the index and closely matches the trough. It also matches

the steep decline of the index, albeit with a short delay and a slight overshoot prior to the de-

cline. Finally, it displays the progressive recovery found in the data, but with more pronounced

short term swings.

3.2.5. Model Performance: Non-Targeted Variables

Let us now focus on performance relative to non-targeted variables. In a first step we examine

the implied unemployment growth rate, consumption growth rate and dividend growth rate.

In a second step, we study the local moments of the volatility process.

Figure 5 shows that the model implied growth rate in unemployment matches the data

remarkably well. Most significantly, it increases and decreases with a very short lag relative

to the data, matches the timing of the peak rate, and picks up the small rebound recorded

after the first wave. Values obtained are also close to the data. In contrast, the base model

(not displayed) is flat near zero throughout the period examined, hence unable to reproduce

any aspect of the evolution of the unemployment growth rate. The pattern recorded in the

BDRA-SEIRD-SIP-LIFT model therefore reflects the impact of the coefficient AY pset q . In

that regard, it is important to remember that the unemployment growth rate was not targeted

in the optimization. The targeted quantities in the minimization of errors are the S&P 500

level and volatility and the number of COVID-19 cases.

Figure 6 establishes that the model-implied consumption growth rate closely fits the data

as well. It captures the timing and magnitude of the drop during the first wave of the outbreak,
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as well as the quick rebound that followed. However, it fails to capture the smaller temporary

increase in the consumption growth rate during the second wave.

Figure 7 illustrates the behavior of the model-implied dividend growth rate. The model-

implied pattern matches the pattern in the data, albeit with a substantial lead. The reason

for this anticipatory behavior is that the dividend series constructed from the data is a a

yearly average of dividends paid on stocks in the index, whereas the model-implied counterpart

updates at a monthly frequency, hence reacts faster to the propagation of the pandemic.

3.2.6. Regime Probabilities and Pandemic Model

To better understand the performance of the BDRA-SEIRD-SIP-LIFT model it is informative

to focus on the dynamics of the conditional regime probabilities. Figure 8 and 9 display their

evolution for the model with pandemic and the base model. The shaded area corresponds

to the brief recession period February through April identified by NBER. The base model

overestimates the duration of the recession, and has a major reaction with a delay of two months.

The volatility in the base model, illustrated in Figure 10, increases with a delay exceeding two

months and stays high for several months thereafter. It therefore completely misses the observed

spike in volatility during the first wave of the pandemic. On the contrary, the conditional

probabilities in the SIP-LIFT model react sooner and with smaller magnitudes. The increase

in the recession probability is confined to the corresponding NBER recession period. The

volatility, in the SIP-LIFT model, is directly impacted by the increase in the number of COVID

cases through changes in the drift parameters in the consumption, unemployment and dividend

dynamics. It follows that it not only generates a high level of volatility at the onset of the

crisis, but also is able to capture the rapid decrease as the number of new cases decreases. The

introduction of this new channel allows the model to correctly estimate the duration of the

recession, and therefore avoids the delayed increase in volatility and extended duration of the

volatility event that is observed in the base model.
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Figure 1: Estimation process diagram. Box colors are Yellow: parameters, Green: models,

Grey: data, Pink: model output - intermediary quantities, Blue: model output - target quan-

tities.
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Figure 2: Number of cases in the data (blue) and in the pandemic optimized model (red)
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Figure 3: Stock price volatility: 10 days rolling volatility of the SP500 in blue, pandemic model

with LIFT in red dashed.
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Figure 4: Stock price level: SP500 dividend not reinvested in blue, pandemic model with LIFT

in red dashed. Prices are normalized at 100 on January 1st
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Figure 5: Unemployment growth rate. Monthly data in blue, pandemic model with LIFT in
red dashed
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Figure 6: Consumption growth rate. Monthly data in blue, pandemic model with LIFT in red
dashed
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Figure 7: Dividend growth rate. Monthly data in blue, pandemic model with LIFT in red
dashed
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Figure 8: Conditional regime probabilities for the model with pandemic. Normal regime in

blue, Recession regime in red, Boom regime in yellow. The shaded area corresponds the NBER

recession period. The sample period is January 1st through August 7th. The X-axis displays

the day number.
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Figure 9: Conditional regime probabilities for the model without pandemic. Normal regime

in blue, Recession regime in red, Boom regime in yellow. The shaded area corresponds to the

NBER recession period. The sample period is January 1st through August 7th. The X-axis

displays the day number.
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Figure 10: Volatility evolution in the model without pandemic. The sample period is January

1st through August 7th. The X-axis displays the day number.
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Table 4: Estimated coeeficients for the SEIRD-LIFT model and the BDR-pandemic additional

parameters. Sample period for estimation is January 2020 to July 2020.

BDR Model with Pandemic
estimated value S.E.

AY1 p1q -0.0315006 tbc
AY2 p1q -0.0008576 tbc
AY3 p1q -0.6988067 tbc
ACp1q 0.0052649 tbc
AGp1q 0.0008880 tbc
ai 0.9625000 tbc
al 0.9999878 tbc
ω 0.7552613 tbc
h 0.9622143 tbc

SEIRD-SIP-LIFT model
estimated value S.E.

βS 2.3109725 tbc
σ 0.0785581 tbc
γ 0.0828043 tbc
λ 0.0334010 tbc
λw 0.5971951 tbc
µ 0.0000222 tbc
νo 0.0000047 tbc
ν 0.0000000 tbc
tm 66.4458234 tbc
κ0 (pre SIP) 3.8165255 tbc
q 0.0801839 tbc
q2 0.00084946 tbc
κ1 (during SIP) 23.4286342 tbc
κ2 (post SIP) 13.2838305 tbc
t1 61.5118993 tbc
t2 120.2493877 tbc
τ0 18.8986733 tbc

4. Conclusion

In this paper we extended the BDRA model to accommodate unpredictable pandemic events

such as the onset of an outbreak and the discovery of a vaccine, as well as associated mitigat-

ing policies such as SIP and LIFT. The BDRA-SEIRD-SIP-LIFT model was estimated using
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economic and disease data from the COVID-19 outbreak. The estimated model was found to

provide a close fit to variables targeted in the estimation, i.e., the number of new cases, the

S&P 500 level and the index return volatility, as well as to non-targeted variables, i.e., the

unemployment and consumption growth rates. At the same time, it generated a close match to

25 unconditional moments of economic time series, hence displayed consistency with long run

statistical properties of economic and financial time series. Beliefs-dependent risk aversion was

found to be critical for explanations of phenomena pre- and intra-COVID-19 outbreak.

While the model developed provides a comprehensive explanation for long term and short

term features of the data, it leaves room for further improvements. Among the phenomena that

are not explained are the level and behavior of the short rate and of the term structure of interest

rates, both in the long run and during the COVID-19 outbreak. In that regard, the average

interest rate and bond yields generated by the model are too high, and short term fluctuations

too large to properly capture the data. A critical ingredient for that purpose is likely to be

monetary policy. Actions by the Federal Reserve, e.g., pertaining to the federal funds rate,

have undoubtedly shaped the response of fixed income markets during the outbreak. More

generally, Quantitative Easing has had a profound effect on these markets since its inception

in 2008. Incorporating such monetary policies in the analysis is an avenue for future research.

5. Appendix

5.1. Appendix A: the Stochastic SEIRD-SIP-LIFT Model

This appendix describes the SEIRD model under a SIP-LIFT policy, i,e,, a shelter-in-place (SIP)

policy followed by a lifting (LIFT) of the restriction. This model extends Detemple (2022) by

incorporating the unpredictable nature of pandemics and vaccine discoveries, captured by the

Markov chain in Section 2.1. For generality we allow all the coefficients to be time-dependent.

In this model, populations in S, E , I transition to a sheltered stay-at-home state upon im-

plementation of SIP and stay put until the policy is lifted. Sheltered (quarantined) populations
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Figure 11: Flowchart for the SEIRD-SIP model.

are denoted with a superscript Q . Sheltered populations further split between work-at-home

and laid-off populations, according to the fractions h, l where h ` 1 “ 1 . Work-at-home

and laid-off populations are subscripted by h and l , respectively. All infectious populations,

sheltered and non-sheltered, split in three subgroups: asymptomatic, symptomatic mild, and

symptomatic severe. Figure 5.1 illustrates the propagation mechanism across populations under

SIP. Subgroups are not displayed.

We assume implementation of SIP takes time. The migration rate from S, E , I to the

corresponding sheltered categories takes place at the constant rate q . Likewise when SIP is

lifted, i.e., during LIFT, reverse migration from the sheltered categories to non-sheltered ones

occurs at the constant rate q2 . In both cases, delays in implementation occur for a variety

of reasons including the fact that policy recommendations are typically not uniformly adopted

across states and, even when they are adopted, implementation may not be synchronous.

The evolution of populations under SIP-LIFT is described by the following system of ordi-

nary differential equations
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(5.1)

dps “ pµtp1´ pd ´ p
Q
s,h ´ p

Q
s,l ´ psq ´ βtp

asy
i ps ´ pqt ` ν

o
t ` νt1Vtqpsqdt

dpQs,h “ pqthps ´ pν
o
t ` νt1Vtqp

Q
s,hqdt

dpQs,l “ pqtp1´ hqps ´ pν
o
t ` νt1Vtqp

Q
s,lqdt

dpe “ pβtp
asy
i ps ´ pqt ` µt ` σtqpeqdt

dpQe,h “ pqthpe ´ pµt ` σtqp
Q
e,hqdt

dpQe,l “ pqtp1´ hqpe ´ pµt ` σtqp
Q
e,lqdt

dpi “ pσtpe ´ pqt ` µt ` µit ` γtqpiqdt

dpQi,h “ pqthpi ` σtp
Q
e,h ´ pµt ` µit ` γtqp

Q
i,hqdt

dpQi,l “ pqtp1´ hqpi ` σtp
Q
e,l ´ pµt ` µit ` γtqp

Q
i,lqdt

dpr “ pγtppi ` p
Q
i,h ` p

Q
i,lq ´ µtpr ` pν

o
t ` νt1Vtqpps ` p

Q
s,h ` p

Q
s,lqqdt

dpd “ µitppi ` p
Q
i,h ` p

Q
i,lqdt

Several additional aspects of the propagation model under SIP are worth highlighting. First,

all births are assigned to the susceptible classes. For sheltered susceptible SQ , as the birth rate

equals the death rate, natural growth is null. For non-sheltered susceptible S , natural growth

is determined by the excess of birth in the surviving population 1 ´ pd net of birth assigned

to the sheltered susceptible pQs over death in the non-sheltered susceptible ps . Aggregating

over sheltered and non-sheltered populations gives a flow of birth equal to p1´ pdqµ . Second,

populations in SQ remain isolated, until the policy is lifted or they transition to R due to

natural immunity or vaccination. Hence, they cannot be contaminated during that period.

Third, R includes all recovered, naturally immune and vaccinated populations. Such individ-

uals are immune to the disease, therefore apt to rejoin the workforce.5 Fourth, D includes

all the deceased from an infection: the fraction pd is the cumulative death toll as a fraction

of the initial population p0 “ 1 . Last, the transition from S to E does not depend on

5The formulation abstracts from issues of incomplete information pertaining to the health status of popula-
tions, in particular asymptomatic infectious ones.
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sheltered individuals. Contamination, in fact, is entirely driven by non-sheltered asymptomatic

individuals.

As previously indicated, lifting SIP, i.e., applying LIFT, reverses the migrations from S, E , I

to SQ, EQ, IQ in the model above. The reverse compliance rate q2 replaces q . Applying that

rate to sheltered symptomatic infectious populations does not affect the economic properties

of the model, because such populations are not able to work by assumption.

5.2. Appendix B: Proofs

Proof of Proposition 2.1. The first order condition for population j P ts, e, i, ru is

(5.2)
K
ÿ

k“1

Pk

ˆ

ct
aj

˙´Rk

“
yξt
at
” Ht.

where y is a constant Lagrange multiplier, ξt is the stochastic discount factor and at “ e´βut

is the subjective discount factor. Optimal consumption is ct “ ajIpHtq where the function I ,

by concavity and Inada conditions, is the unique solution of the equation
řK
k“1 PkI

´Rk “ H

and is independent of j .

Equilibrium in the consumption good market ensures
ř

jPts,e,i,ru pjajIpHtq “ Ct . Solving

gives IpHtq “ Ct{p
a
c with pac “

ř

jPts,e,i,ru pjaj. Hence, up to a constant, the stochastic discount

factor is

(5.3) ξt “
K
ÿ

k“1

e´βut
ˆ

Ct
pact

˙´Rk

Pkt.

The jump in the SDF at t “ τ0 is

(5.4)
∆ξt
ξt´

“

K
ÿ

k“1

e´βut pCtq
´Rk Pkt

řK
k“1 e

´βut pCtq
´Rk Pkt

´

ppactq
Rk ´ 1

¯

dN e
12,t

where pact “ 1 `∆ipλi ` λsai ´ 1q and ∆i is the jump in pit , and where we used pact´ “ 1 .

The coefficient λs “ p1 ´ λqp1 ´ λwq is the fraction of symptomatic mild in the infectious
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population, λi “ p1 ´ λqλw is the fraction of asymptomatic. The jump in the SPD at t “ τ1

is null because pac is continuous at that point

Given the observed filtration, the SPD has dynamics,

dξt{ξt´ “ ´rt´dt´
ÿ

αPtC,G,Y u

θαt´dν
α
t ´ θ

e2
t´dÑ

e
12,t.

where r is the interest rate, θαt for α P tC,G, Y u is the market price of risk associated

with the innovations dναt “ dWα
t ´

ř3
k“1 µ

αpekqPktdt , dÑ e
ij,t “ dN e

ij,t ´ Λe
ijdt are the jump

innovations and θ
ej
t are the market prices of jump risks. Taking derivatives on both sides of

(5.3) and identifying drift, jump, and volatility coefficients for diffusion and jump risks yields

the formulas announced. In particular,

(5.5) θe2t´ “
K
ÿ

k“1

e´βut pCtq
´Rk Pkt

řK
k“1 e

´βut pCtq
´Rk Pkt

´

1´ ppactq
Rk
¯

and θe3t´ “ 0 . The interest rate has the jump premium component θe2t´Λ12 .

Proposition 5.1. For α P tC,G, Y u , define the diagonal matrix diagpµαq with diagonal

µα , and the identity matrix IK of dimension K . Also introduce the K ˆK matrix function

Υpt, set q with elements,

(5.6) Υijpt, s
e
t´q “ e1i pe

1
i b IKqGpt, s

e
t´q pei b IKq ej

where

Gpt, e1q ” Go
1 ` Λe

12G
e
1ptq(5.7)

with Go
1 ” pΦ

oq
´1 ,

(5.8) Ge
1ptq ” ´ pΦ

o
q
´1
pΦo

` IK2Λe
12q

´1
`

ż 8

t

e´Φopv´tqGpv, e2qe
´Λe12pv´tqdv
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(5.9)

Gpt, e2q ”

ż 8

t

e´Φopv´tq´
şv
t Φepu,e2qdu

ˆ

e´Λe23pv´tqIK2 ` Λe
23

ż v

t

e´Φops´tq´
şs
t Φepu,e2qdu´Λe23ps´tqds

˙

dv

(5.10) Gpt, e3q ”

ż 8

t

e´Φops´tq´
şs
t Φepu,e3qduds

(5.11) ´Φo
“ pdiagKr´gksb IKq` pIK bΛ1q` pdiagKrκ´Rksb diagpµ

C
k qq` pIK b diagpµ

G
k qq

(5.12) ´Φe
pt, ejq “ diagKrη

e
kpt, ejqs b IK

(5.13) ηekpt, ejq “

ˆ

`

pκ´RkqA
C
k ` A

G
k

˘ µp
e
wpt, ejq

pewt
`Rk

µp
a
ctpt, ejq

pact

˙

1tj‰1u.

The functions pµp
e
wpt, ejq, µ

pactpt, ejqq are the drifts of ppew, p
a
cq , and

gk “ βu ´
1

2
pκ´Rkqpκ´ 1´Rkqpσ

C
q
2(5.14)

µGok “ µDok ´ κµ
C
ok `

1

2
ρσDσCp1´ κq(5.15)

µαo,k “ µαo pekq, µαk,t “ µαo,k ` η
e
kpt, s

e
t qq(5.16)

If Υijpt, s
e
t´q is finite, the stock price is St “ DtZ

1

tΥpt, s
e
t´qPt where Zt “ qkt{Pkt .

Proof of Proposition 5.1. Using GtC
κ
t “ Dt enables us to write the stock price as

St
Dt

“

Et´

”

ş8

t

´

řK
k“1 e

´βuv pCv{p
a
cvq
´Rk Pkv

¯

Dvdv
ı

řK
k“1Hk,t

“

ş8

t
V H pt, vq dv
řK
k“1Hk,t

,

with V H pt, vq ”
řK
k“1 V

H
k pt, vq , V H

k pt, vq ” Et´ rHk,vs , Hk,v ” e´βuv ppacvq
Rk Cκ´Rk

v PkvGv .

Let τ0 ” inftv ě 0 : ∆N12v “ 1u be the time a pandemic is triggered. Then define Lt ”

pL1t, . . . , LKtq with Lkt ” e´βt ppactq
Rk Cκ´Rk

t Gt , and Nt ” LtbPt with Pt ” pP1t, . . . , PKtq
1 .

The operator b is the Kronecker product. The Kronecker product of matrices (or vectors)

A and B is the matrix A b B “ rAijBsi,j“1,...,K . The vector N multiplies the vector

of posterior probabilities Pt by e´βut ppactq
Rk Cκ´Rk

t Gt, k “ 1, ..., K and stacks the resulting

vectors on top of each other. Also, if ek ” p0, . . . , 1, . . . , 0q
1 denotes the kth unit vector, let
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e ” vec pre1, . . . , eKsq ” pe11, . . . , e
1
Kq
1 be the K2 -dimensional vector stacking unit vectors on

top of each other.6 Finally, define the vector of expected growth rates pµ̄αq1 ” rµα1 , . . . , µ
α
k s ,

the diagonal matrix diag pµ̄αq with diagonal µ̄α , the kth eigenvalue δk pAq of an arbitrary

matrix A , and the identity matrix IK of dimension K . Define pηkt ” pηokt ` pηekt where

pηokt ” pκ´Rkq

ˆ

pµCo,t `
1

2
pκ´ 1´Rkq

`

σC
˘2
˙

´ βu ` pµGo,t

pηekt “ pηekpt, s
e
t´q “

ˆ

´

pκ´Rkq pA
C
t `

pAGt

¯ µp
e
wpt, set´q

pewt
`Rk

µp
a
ctpt, set´q

pact

˙

1Et ,

where for α P tC,Gu , pµαo,t “
řK
k“1 µ

α
o,kPkt and pAαt “

řK
k“1A

α
kPkt. With these definitions

and the notation above, the dynamics of L and P are

dLt “ diagK rpηktsLtdt`
`

pdiagK rκ´Rksqσ
CdνCt ` IKσ

GdνGt
˘

Lt

” µLt Ltdt` σ
LC
t Ltdν

C
t ` σ

LG
t Ltdν

G
t ,

dPt “ Λ1Ptdt`
ÿ

αPI
σPαt Ptdν

α
t ,

where σPαt ” diagK r∆
α
kts where ∆α

kt “ pµ
α
k,t´

řK
k“1 µ

α
ktPktq{σ

α and diagK raks ” diag paq for

a1 ” ra1, . . . , aKs . Applying Ito’s lemma to the Kronecker product Nt ” Lt b Pt gives, with

I ” tC,G, Y u and J ” tC,Gu ,

dNt “ pdLt b Ptq ` pLt b dPtq ` pdLt b dPtq “

˜

`

µLt b IK
˘

dt`
ÿ

αPJ

`

σLαt b IK
˘

dναt

¸

Nt

`

˜

pIK b Λ1q dt`
ÿ

αPI

`

IK b σ
Pα
t

˘

dναt

¸

Nt `
ÿ

αPJ

`

σLαt b σPαt
˘

Ntdt

” ´ΦNtdt`
ÿ

αPI
σNαt Ntdν

α
t ,(5.17)

6 The vec-operator stacks the columns of a matrix A on top of each other, vec prA1, . . . , AKsq “

pA11, . . . , A
1
Kq
1

. When A “ IK , the K -dimensional identity matrix, vec pIKq “ vec pre1, . . . , eKsq “ e .
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where ´Φ ”
`

µLt b IK
˘

` pIK b Λ1q `
ř

αPJ
`

σLαt b σPαt
˘

. Using

pηokt ” pκ´Rkq

ˆ

pµCo,t `
1

2
pκ´ 1´Rkq

`

σC
˘2
˙

´ β ` pµGo,t ” pκ´Rkq pµ
C
o,t ´ gk ` pµGo,t

gives ´Φpt, set q “ ´Φo ´ Φept, set q where with gk ” ´
1
2
pκ´Rkq pκ´ 1´Rkq

`

σC
˘2
` β and

ηok ” pκ´Rkqµ
C
o,k ´ gk ` µ

G
o,k

ηekpt, s
e
t q ”

ˆ

`

pκ´RkqA
C
k ` A

G
k

˘ µp
e
wpt, ejq

pewt
`Rk

µp
a
ctpt, ejq

pact

˙

1tset‰e1u

´Φo
“ pdiagK rη

o
kts b IKq ` pIK b Λ1q `

`

diagK rκ´Rks b
`

diag
`

µ̄C
˘

´ pµCo,tIK
˘˘

`
`

IK b
`

diag
`

µ̄G
˘

´ pµGo,tIK
˘˘

“ pdiagK r´gks b IKq ` pIK b Λ1q `
`

diagK rκ´Rks b diag
`

µ̄C
˘˘

`
`

IK b diag
`

µ̄G
˘˘

,

´Φe
pt, set q “ pdiagK rη

e
kts b IKq ,

σNCt ”
`

σLCt b IK
˘

`

´

IK b σ
pC
t

¯

“ pdiagK rκ´Rks b IKqσ
C
`
`

IK b σ
PC
t

˘

,

σNGt ”
`

σLGt b IK
˘

`

´

IK b σ
pG
t

¯

“ pIK b IKqσ
G
`
`

IK b σ
PG
t

˘

,

σNYt ” IK b σ
pY
t “ IK b σ

PY
t .

The final expression for Φo and Φe above is obtained by cancelling the terms involving

pµCo,t,
pACt ,

pAGt . This follows because the Kronecker product is bilinear and associative, pAb pB ` Cqq “

pAbBq` pAb Cq , and pαAbBq “ pAb αBq “ α pAbBq for scalar α and matrices

A,B . Next define Gt “ Ft b F s
e

8 where F set is the natural filtration of set .

From Equation (5.17) the conditional mean V N pt, sq ” E rNv|Gts solves dV N
j pt, vq “

´ pΦo ` Φe pv, ejqqV
N pt, vq dv with initial condition V N pt, tq “ Nt . The solution is V N pt, vq “
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exp
`

´Φopv ´ tq ´
şv

t
Φe

`

u, seu´
˘

du
˘

Nt . Thus,

V H
pt, sq “

K
ÿ

k“1

V H
k pt, sq “ e1

`

e´Φops´tq
˘

E
”

e´
şs
t Φepu,seu´qdu

ˇ

ˇ

ˇ
F set´

ı

Nt,

where the matrix exponential e´Φops´tqE
”

e´
şs
t Φejpu,s

e
u´qdu

ˇ

ˇ

ˇ
F set´

ı

is a K2ˆK2 diagonal matrix

because Φ is K2 ˆK2 diagonal, and the vector e1 ” vec pre1, . . . , eKsq selects element k in

block k to construct the sum
řK
k“1 V

H
k pt, sq .

Let τ0 “ inftv ą 0 : ∆N e
12 “ 1u and τ1 “ inftv ą τ0 : ∆N e

23 “ 1u . Integration then gives

with ϑjps, tq ” e´Φops´tqe´
şs
t Φepu,ejqdu ,

St
Dt

“

$

’

’

’

’

&

’

’

’

’

%

Ere1p
ş8

t ϑ3ps,tqdsq|Fs
e

t´sN3t

e1N3t
if t ě τ1

E
”

e1
´

şτ1
t ϑ2ps,tqds`

ş8

τ1
ϑ3ps,tqds

¯ˇ

ˇ

ˇ
Fset´

ı

N2t

e1N2t
if τ0 ď t ă τ1

E
”

e1
´

şτ0
t ϑ1ps,tqds`

şτ1
τ0
ϑ2ps,tqds`

ş8

τ1
ϑ3ps,tqds

¯ˇ

ˇ

ˇ
Fset´

ı

N1t

e1N1t
if t ă τ0

provided the integrals exists.

To proceed, define Gpt, set´q ”
ş8

t
e´Φops´tqE

”

e´
şs
t Φepu,seu´qdu

ˇ

ˇ

ˇ
F set´

ı

ds . If t ą τ1 , then

set “ set´ “ e3 because Λe
31 “ Λe

32 “ 0 and,

Gpt, e3q “

ż 8

t

e´Φops´tqe´
şs
t Φepu,e3qduds.

If τ1 ě t ą τ0 , then set´ “ e2 , and because P
`

τ1 P dv| s
e
t´ “ e2

˘

“ Λe
23e

´Λe23pv´tq ,

Gpt, e2q “E

„
ż τ1

t

e´Φops´tqe´
şs
t Φepu,seu´qdu

ˇ

ˇ

ˇ

ˇ

F et´


` E
”

e´Φopτ1´tqe´
şτ1
t Φepu,e2qduGpτ1, e3q

ˇ

ˇ

ˇ
F et´

ı

“Λe
23

ż 8

t

ˆ
ż v

t

e´Φops´tq´
şs
t Φepu,e2qduds

˙

e´Λe23pv´tqdv

` Λe
23

ż 8

t

e´Φopv´tq´
şv
t Φepu,e2qduGpv, e3qe

´Λe23pv´tqdv

“

ż 8

t

e´Φopv´tq´
şv
t Φepu,e2qdu

ˆ

e´Λe23pv´tqIK2 ` Λe
23

ż v

t

e´Φops´tq´
şs
t Φepu,e2qdu´Λe23ps´tqds

˙

dv
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If t ă τ0 , set´ “ e1 , and hence, Φept, e1q “ 0 . Then as P
`

τ0 P dv| s
e
t´ “ e1

˘

“

Λe
12e

´Λ12pt´vq ,

Gpt, e1q “E

„
ż τ0

t

e´Φops´tq´
şs
t Φepu,e1qduds

ˇ

ˇ

ˇ

ˇ

F set´


` E

„
ż 8

τ0

e´Φops´tq´
şs
t Φepu,seu´qduds

ˇ

ˇ

ˇ

ˇ

F set´


“Λe
12

ż 8

t

ż v

t

e´Φops´tqdse´Λe12pv´tqdv ` Λe
12

ż 8

t

e´Φopv´tqGpv, e2qe
´Λe12pv´tqdv

“´ Λe
12 pΦ

o
q
´1

ż 8

t

`

e´Φopv´tq
´ IK2

˘

e´Λe12pv´tqdv ` Λe
12

ż 8

t

e´Φopv´tqGpv, e2qe
´Λe12pv´tqdv

“pΦo
q
´1

`

IK2 ´ Λe
12 pΦ

o
` IK2Λe

12q
´1
˘

` Λe
12

ż 8

t

e´Φopv´tqGpv, e2qe
´Λe12pv´tqdv

“pΦo
q
´1
` Λe

12

ˆ

´pΦo
q
´1
pΦo

` IK2Λe
12q

´1
`

ż 8

t

e´Φopv´tqGpv, e2qe
´Λe12pv´tqdv

˙

“Go
1 ` Λe

12G
e
1ptq

Next, note that Nt “ pLt b Ptq “ vec pPtL
1
tq “ pL

1
t b IKqPt . Therefore,

e1Nt “ L1tPt “ Et

«˜

ÿ

k

e´βt ppactq
Rk C´Rkt Pkt

¸

Dt

ff

and Nt{e
1Nt “ pZt b IKqPt where Zt “ rZ1t, . . . , ZKts with Zkt “ qkt{Pkt , k “ 1, ..., K .

Let Υij pt, s
e
t q ” e1i pe

1
i b IKqGpt, s

e
t q pei b IKq ej be element ij of the K ˆK matrix function

Υ pt, set q . With this notation, e1Φ´1Nt{e
1Nt “ Z 1tΥ pt, s

e
t qPt and,

St
Dt

“

$

’

&

’

%

Z 1tΥ pt, s
e
t qPt if Υij pt, s

e
t q is finite

8 otherwise
.

Applying Ito’s lemma gives the volatility,

σ1t “
`

κσC , σG, 0
˘

`
Z 1tΥDtPt
Z 1tΥPt

`
p1tΥ

1DtZt
Z 1tΥPt

,
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DtZt “
DtLt
P 1tLt

´ Lt
P 1tDtLt ` L1tDtPt

pP 1tLtq
2 “

ˆ

1

P 1tLt
´ Lt

P 1t
pP 1tLtq

2

˙

DtLt ´ Lt
L1tDtPt
pP 1tLtq

2 .

Using DYt Lt “ 0 and Dαt Pt “ σP,αt Pt gives σ1t “
´

ρσD ` σSCRt ` σSCGt ,
a

1´ ρ2σD ` σSGGt , σSY Gt

¯

with,

σSCRt ”
P 1tΥ

1

Z 1tΥPt

ˆ

1

P 1tLt
´ Lt

P 1t
pP 1tLtq

2

˙

DCt Lt “
ˆ

Z 1tdiagK r´RksΥPt
Z 1tΥPt

´ Z 1tdiagK r´RksPt

˙

σC ,

σSαGt ”

ˆ

Z 1tΥ

Z 1tΥPt
´

P 1tΥ
1

Z 1tΥPt
Lt

pLtq
1

pP 1tLtq
2

˙

Dαt Pt “
ˆ

Z 1tΥ

Z 1tΥPt
´ Z 1t

˙

σP,αt Pt.

The right hand sides of these equalities are obtained by using DCt Lt “ diagK r´RksLtσ
C ,

Dαt Pt “ σP,αt Pt and Zt “ Lt{P
1
tLt . Simplifying gives the formulas announced.

Remark 5.2. Note that

M e
t “ e´Φot´

şt
0 Φepu,seu´qduGpt, set´q `

ż t

0

e´Φov´
şv
0 Φepu,seu´qdudv

is a F se¨ -martingale. Using Ito’s lemma and ErdM e
t |F s

e

t s “ 0 gives

`

Φo
` Φe

pt, set´q
˘

Gpt, set´q “
B

Bt
Gpt, set´q ` IK2 `

3
ÿ

j“1

pGpt, ejq ´Gpt, s
e
t´qq

`

set´
˘1

Λeej,

with boundary condition G p8, ¨q “ 0K2 , where 0K2 is a square matrix of zeros of dimension

K2 . Evaluating this at all possible values of set P te1, e2, e3u gives the ODE

dGptq “
´

rΦptqGptq ´ IK2

¯

dt; Gp8q “ 13 b 0K2

where Gptq1 ” rGpt, e1q
1, Gpt, e2q

1, Gpt, e3q
1s and rΦptq ” diag3 rΦpt, ejqs` pΛ

e b IK2q . Integrat-

ing (if the RHS exists) and using the boundary condition gives

Gptq “

ż 8

t

e´
şv
t
rΦpuqdudv p13 b IK2q(5.18)
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Gpt, set´q “
´

`

set´
˘1
b IK2

¯

ż 8

t

e´
şv
t
rΦpuqdudv p13 b IK2q ,(5.19)

and therefore,

(5.20) Υijpt, s
e
t´q “ e1i pe

1
i b IKq

´

`

set´
˘1
b IK2

¯

ż 8

t

e´
şv
t
rΦpuqdudv p13 b IK2q pei b IKq ej

This shows how to calculate the function Gpt, set´q in a general setting without further restric-

tions on the matrix Λe .

5.3. Appendix C: Orthogonalization

The state variables X 1
t ” rCt, Gt, Yts are orthogonalized state variables derived from macro

variables rXt ” rCT , Dt, Ets , where Ct is per capita consumption, Dt aggregate dividends,

and Et unemployment. Macro state variables have covariance matrix Σ and dynamics

(5.21) d rXt “ diagr rXts

ˆˆ

µ
rXsmt `

rApsmt q
µp

e
wpt, set q

pewt
1Et

˙

dt` ΣdWv

˙

where rA1psmt q “ rACpsmt q, A
Dpsmt q, A

Epsmt qs , µ
rX is a 3 ˆ 3 matrix with rows composed of

expected growth rates in each regime, Σ is the Choleski decomposition of the covariance matrix

ΣΣ1 ,

(5.22)

µ
rX
“

»

—

—

—

—

–

µC1 µC2 µC3

µD1 µD2 µD3

µE1 µE2 µE3

fi

ffi

ffi

ffi

ffi

fl

, Σ ”

»

—

—

—

—

–

σC 0 0

ρCDσD
b

1´ pρCDq2σD 0

ρCEσE ρDEσE
b

1´ pρCEq2 ´ pρDEq2σE

fi

ffi

ffi

ffi

ffi

fl

,
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and W 1
t “

“

WC ,WG,W Y
‰

is a 3 -dimensional vector of independent Brownian motions. To

find the orthogonalized state variables, define rxit “ log rXit and note that

drxt “

ˆ

µ
rXsmt ´

1

2
dg rΣΣ1s ` Apsmt q

µp
e
wpt, set q

pewt
1Et

˙

dt` ΣdWt

where for a mˆm square matrix B , dgrBs is the mˆ 1 vector of diagonal elements of B .

Then define pxt “ Krxt with K “ diagrdgrΣssΣ´1 and note that

dpxt “ K

ˆ

µ
rXsmt ´

1

2
dg rΣΣ1s ` rApsmt q

µp
e
wpt, set q

pewt
1Et

˙

dt` diagrdgrΣssdWt.

Finally, set Xt “ exp ppxtq and note that

(5.23) dXt “ diagrXts
`

µXpt, smt , s
e
t qdt` diagrdgrΣssdWt

˘

(5.24) µXpt, smt , s
e
t q “ K

ˆ

µ
rXsmt´ ´

1

2
dg rΣΣ1s ` rApsmt q

µp
e
wpt, set q

pewt
1Et

˙

`
1

2
dgrdgrΣsdgrΣs1s.

This establishes the one-to-one mapping between underlying and orthogonalized macro factors

in (2.8), (2.9), (2.10). With Apsmt q “ rA
Cpsmt q, A

Gpsmt q, A
Y psmt qs , the relations are Apsmt q “

K rApsmt q , µXo pstq “ K
´

µ
rXst´ ´

1
2
dg rΣΣ1s

¯

` 1
2
dgrdgrΣsdgrΣs1s and ΣX

ij “ 1ti“judgrΣsi . The

last relation shows σC “ σC , σG “ σD
b

1´ pρCDq2 and σY “ σE
b

1´ pρCEq2 ´ pρDEq2 .
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