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Convex Incentives and Liquidity Premia

Abstract

We show that convexities in investors’ preferences significantly amplify the effect of transac-

tion costs on liquidity premia. To maximize year-end bonuses, fund managers with negative

benchmark-adjusted performance have an incentive to take excessive risks. However, trading

costs hinder their ability to do so. Therefore, larger liquidity premia are required to compen-

sate for increased turnover and lower bonuses ensuing from suboptimal risk-taking. These

results are robust to alternative sources of convexity such as prospect theory and status

concerns. Using data on actively-managed mutual funds, we provide empirical support for

the novel predictions of our theoretical model.



1 Introduction

It is empirically recognized that liquidity is valuable to investors and that they demand a

return premium to compensate for transaction costs. Prior studies find a large difference in

expected returns across portfolios sorted on liquidity measures. For instance, Brennan and

Subrahmanyam (1996) and Pastor and Stambaugh (2003) find return differences in the order

of 6% to 7% per year. However, few existing theories have been able to corroborate the large

magnitude of these empirical findings. The seminal work of Constantinides (1986) shows

that, even though trading costs significantly reduce the frequency and volume of trading,

they have surprisingly little impact on utility. As a result, the return that a marginal investor

is willing to exchange for zero trading costs (i.e., the liquidity premium) is found to be an

order of magnitude smaller than the transaction cost rate.

There have been prior attempts to reconcile this apparent disconnect between theory and

evidence regarding the magnitude of liquidity premia. To the best of our knowledge, the four

main references are Jang, Koo, Liu, and Loewenstein (2007), Lynch and Tan (2011), Dai,

Li, Liu, and Wang (2016), and Chen, Dai, Goncalves-Pinto, Xu, and Yan (2021). They all

argue that the reason for the puzzling disconnect is the assumption of constant investment

opportunities used in Constantinides (1986). By extending that seminal model to include

time-varying investment opportunities, these studies show that transaction costs can have a

much larger effect on liquidity premia. Intuitively, when investment opportunities vary over

time, investors are either forced to trade more frequently and pay a heavier transaction cost

bill, or they do not trade as frequently but lose utility from highly suboptimal risk exposures.

Our paper complements these prior studies by arguing that convexity in investors’ prefer-

ences can be an alternative mechanism to increase the magnitude of the effect of transaction

costs on liquidity premia, while keeping investment opportunities constant. This is motivated

by the observation that convexities are ubiquitous in managerial compensation, behavioural

economics, and goal-reaching problems, and that they can significantly affect the decision-

making process. We study this question both theoretically and empirically, by focusing on

the risk-taking incentives induced by the year-end bonus payments that are prevalent in the

compensation contracts of mutual fund managers. However, our main results are robust
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to other non-concave incentives from the behavioural economics literature, such as those

derived from prospect theory (Kahneman and Tversky (1979)) and status concerns (Lee,

Zapatero, and Giga (2018)).

The mutual fund industry provides an ideal setting to examine how convex incentives

affect the magnitude of liquidity premia, for four main reasons. First, this industry has

grown rapidly in the last two decades.1 Hence, it is reasonable to assume that mutual

fund managers as a group have become the marginal investor in many stocks.2 Second, the

compensation contracts of fund managers typically include a convex component in the form

of year-end bonus payments (Ma, Tang, and Gomez (2019)). They reward good performance

but do not penalize bad performance, giving incentives to take excessive risks (Lee, Trzcinka,

and Venkatesan (2019)).3 Moreover, these contracts are typically incomplete, giving fund

managers the residual control over the assets in their portfolios (Hart (2017)).4 Third,

fund managers that are prone to engage in excessive risk-taking also tend to hold more

illiquid stocks in their portfolios compared to other funds (Huang, Sialm, and Zhang (2011)),

implying that risk-taking induced by convex incentives is especially likely to interact with

stock trading costs. Fourth, data on mutual fund characteristics and their portfolio holdings

1 According to the Investment Company Institute, the total net assets of US-registered investment com-
panies was $22.5 trillion at the end of 2017, compared to $13 trillion at the end of 2007, which represents
a 73% increase. The growth was even more dramatic one decade prior, with an increase of about 177% in
total net assets from a value of $4.7 trillion at the end of 1997.

2 For instance, Boguth and Simutin (2018) show that the tightness of leverage constraints in mutual
funds, as captured by their demand for high-beta stocks, is a priced risk factor in the cross-section of stock
returns. This is consistent with mutual funds being the marginal investors.

3 Lee, Trzcinka, and Venkatesan (2019) show that risk-taking of fund managers is motivated more by
this type of compensation structure than by a tournament to capture flows. There is a long strand of
empirical research on the tournament incentives derived from the convex flow-performance relation, starting
with Brown, Harlow, and Starks (1996), and Chevalier and Ellison (1997). However, some studies have
shown that the tournament effect disappears when using different measures, different methodologies, and
different data frequencies. This is why we focus our study on the year-end bonus component that is typical in
fund manager’s compensation contracts. For instance, Busse (2001) shows that the evidence on mutual fund
tournaments disappears when using daily data. Kempf, Ruenzi, and Thiele (2009) show that the risk-taking
incentive of fund managers is contingent on the state of the economy and on employment risk. Schwarz (2012)
argues that mean reversion in the volatility of fund returns mechanically generates the tournament effect.
Spiegel and Zhang (2013) challenge the economic foundation for the existence of a convex relation between
performance and subsequent fund flows, and they show that it is in fact linear when properly estimated.

4 Fund managers have numerous ways to change the riskiness of their portfolios, such as switching
between equity and cash, or switching between low and high beta stocks, among others. This suggests that
it may be very difficult, if not impossible, to specify all the contingencies in their contracts to deter excessive
risk-taking, which deems these contracts incomplete.
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is readily available, allowing us to directly test the empirical predictions of our theoretical

model.

To investigate the effect of convex incentives on liquidity premia, we introduce propor-

tional transaction costs in the model of Basak, Pavlova, and Shapiro (2007).5 The model

considers a risk-averse fund manager whose performance is measured relative to an exter-

nal benchmark. The manager can invest in a risk-free bond and a benchmark stock that

are both perfectly liquid, and she can invest in a non-benchmark stock which is subject to

transaction costs and provides some unspanned risk relative to the benchmark stock.6 If the

manager is able to beat the benchmark by year-end, she is rewarded with a bonus from her

compensation contract. However, if she does poorly relative to the benchmark, there is no

penalty.

In the presence of year-end bonuses, the fund manager’s effective risk appetite is a func-

tion of the performance of the fund relative to the benchmark. The manager’s willingness

to accept gambles is higher when the fund is underperforming the benchmark, because in

this region the impact of the gamble on the marginal value of the manager’s compensation is

also larger. Thus, it is optimal for the fund manager to distort the portfolio away from the

benchmark and increase its tracking-error volatility when underperforming to improve the

odds of finishing ahead by year-end and capture the bonus.7 This is commonly referred to as

the risk-shifting incentive. In addition, the fund manager also has a lock-in incentive. That

is, when the fund’s portfolio performance overtakes that of the benchmark, it is optimal for

the fund manager to lock-in this relative advantage by tracking the benchmark closely.

An immediate implication of this risk-shifting versus lock-in policy is that it requires high

portfolio turnover to build up and undo the potentially large portfolio deviations from the

5 This is a non-trivial task, because the introduction of transaction costs renders the market incomplete,
in which case the martingale technique is no longer applicable.

6 We include two stocks, liquid and illiquid, to match the empirical evidence in Huang, Sialm, and Zhang
(2011) that risk-takers tend to hold more illiquid stocks. However, in Section 3.3 we corroborate our findings
using alternative models with a single stock, like in Constantinides (1986).

7 The manager first deviates from the benchmark by reducing the holdings of liquid benchmark stock
in exchange for risk-free bond. This is because the perfectly liquid stock is a more efficient risk-taking tool.
However, after hitting the position limits on the liquid stock, the fund manager needs to load up on the
illiquid non-benchmark stock. Mutual funds typically have tight position limits on their portfolio holdings.
In Section 3.2.3 we discuss the implications associated with the relaxation of such position limits.
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benchmark.8 Such high turnover requirements imply heavy trading cost bills to be incurred

by fund managers. We simulate the optimal policy under our baseline model and find that the

expected discounted value of the trading cost payments in the presence of convex incentives

is more than sixty times larger than in the case without such incentives.

In addition to the direct costs associated with high portfolio turnover, the introduction

of trading costs also reduces the effectiveness of risk-shifting as a strategy to capture year-

end bonuses, because adjusting portfolio positions frequently is expensive. Simulation results

show that when we increase the trading cost rate from 0% to 1%, the manager’s risk-adjusted

bonus decreases by about 10%.9

As marginal investors, fund managers demand high liquidity premia to compensate for

(i) the heavy trading cost payments associated with increased portfolio turnover, and (ii) the

reduction in total compensation due to suboptimal risk-shifting. We decompose the liquidity

premia into these two parts and show that, as the transaction cost rate increases, the second

component becomes the main contributor to the amplification effect in our model.

Following Constantinides (1986), we focus our analysis on the ratio between the model-

implied liquidity premium and the transaction cost rate (LPTC). In his seminal paper,

Constantinides finds that the model-implied LPTC ratio is only 0.07, concluding that the

liquidity premium is an order of magnitude smaller than the trading cost rate and is therefore

negligible.10

We use a collar function to model year-end bonuses, and match the moments of the

8 This is consistent with the high portfolio turnover observed in practice for mutual funds. According
to the Investment Company Institute, FactBook 2018, the asset-weighted average portfolio turnover rate
of equity mutual funds, for the period 1984-2017, is around 57%. The implication that benchmark-linked
incentives lead to higher turnover is not novel. This result has been obtained by Cuoco and Kaniel (2011)
and Sotes-Paladino and Zapatero (2019). However, their models do not account for the effects of transaction
costs.

9 The manager’s risk-adjusted bonus is defined as the minimum amount of additional assets under man-
agement (AUM) that the manager requires for foregoing the bonus. This measure is a function of managerial
risk aversion. The 10% reduction includes the mechanical effect of trading cost payments on relative per-
formance. If we assume that trading costs are waived upon trading, to prevent such mechanical effect, the
manager’s risk-adjusted bonus decreases by 4.61% when increasing the transaction rate from 0% to 1%. For
fair comparability, when we waive the trading cost payments, the optimal policy that is followed is a policy
that includes the no-trading region generated by those trading costs.

10 These results are generated using a proportional transaction cost rate of 1% for both purchases and
sales, which is equivalent to a 2% round-trip charge. We use this as baseline in the rest of the paper, unless
stated otherwise.
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bonus distribution to the empirical estimates provided in Ma, Tang, and Gomez (2019). We

find that our model-implied LPTC ratio is around 1.175, implying that trading costs are a

first-order determinant of liquidity premia in our setting.11 When we remove the convexity

from our model, the LPTC ratio drops to 0.02, which is even lower than in Constantinides

(1986).12 For a trading cost rate of 1%, the liquidity premium generated by our model with

bonuses is sixty nine times larger compared to an equivalent model without bonuses.

The main empirical prediction of our model is that, the stronger the risk-taking incentives

induced by the convexity in the compensation structure, the larger the liquidity premia. We

use a sample of U.S. domestic actively-managed equity mutual funds and their portfolio

holdings to provide support for this prediction. To the best of our knowledge, this is the

first time in the literature that this relation has been established and tested.

We start by constructing fund-level variables that proxy for convex incentives in the

mutual fund industry. Specifically, we assume that fund managers who have engaged in

risk-shifting in the past to be more likely to continue to do it in the future. Therefore, we

use the eight risk-shifting measures proposed by Huang, Sialm, and Zhang (2011). These

measures capture the various ways fund managers can use to change the riskiness of their

portfolios, such as changing the portfolio composition between equity holdings and cash

holdings, and within equity holdings switching between low beta and high beta stocks, or

changing the idiosyncratic risk of the portfolio, by increasing the tracking-error volatility to

their benchmarks, or increasing portfolio concentration in certain industries or styles.

We aggregate each of the eight fund-level proxies across all funds holding a given stock,

using quarterly share holdings as weights. Then, for each stock, we aggregate across the

eight proxies by averaging the cross-sectional percentile ranks or by using the first principal

11 We assume that the fund manager receives a bonus only if her portfolio outperforms the external
benchmark. Our results remain qualitatively similar when we use any of the alternative specifications
proposed in Basak, Pavlova, and Shapiro (2007). These additional results are available from the authors
upon request.

12 In contrast to Constantinides (1986), the investor in our model does not derive utility from intermediate
consumption, does not have an infinite investment horizon, and has access to a liquid stock which can
be correlated with the illiquid stock. It is important to consider these differences when comparing and
contrasting our results with those in Constantinides (1986). For tractability, we attribute the liquidity
premium entirely to the illiquid stock, but in equilibrium it could potentially be split between the two
stocks. In Section 3.3 we examine alternative settings with a single stock in which the liquidity premium
can only be attributed to that stock, and the results are qualitatively similar to our baseline results.
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component. This results in a single stock-level proxy that captures the convex incentives of

the mutual funds that hold that stock.13 We then examine how this proxy for stock-level

convex incentives affects the relation between transaction costs and future stock returns.

We regress excess returns on lagged trading costs interacted with convex incentives. In our

list of control variables we include stock characteristics such as size, turnover, and ownership

by active mutual funds, as well as the factor loadings from a variety of factor models. We

use the effective trading cost estimates and the testing methodology of Hasbrouck (2009).

We confirm that effective trading costs are strongly related to future stock returns. More

importantly, we find that the interaction of trading costs with convex incentives is significant

at the 1% level and is economically large: for a 1% increase in effective trading costs,

portfolios of stocks with strong risk-shifting incentives require more than 1% higher excess

return per month. These results are consistent with our theoretical model, that risk-shifting

incentives in the mutual fund industry are first-order determinants of the liquidity premia

of stocks, keeping size, turnover, ownership, and other stock characteristics, constant.

In our theoretical model, the two sources of utility losses for fund managers are the

trading cost charges associated with portfolio rebalancing, and the suboptimal risk-shifting

that results in reduced compensation. In the data, we find that the average turnover of the

portfolios of stocks held by funds with strong risk-shifting incentives is about double that in

the weak incentive group. The difference is even more significant for stocks with low betas,

in which case the turnover goes from two to two and a half times larger. However, for stocks

with high betas, turnover is only about 36% larger in the strong incentive group. This is

consistent with the argument in Boguth and Simutin (2018) that low beta stocks provide

lower leverage, and risk-shifting with such stocks requires larger trades. We also show in the

empirical analysis that the relation between trading costs and turnover is more negative in

the high incentive group, suggesting that fund managers are more likely to shift risk using

liquid stocks, requiring additional future return to use illiquid stocks in their risk-shifting

13 In a previous version of this paper we have used each of the eight proxies individually from the first-
level aggregation, i.e., the aggregation across all funds holding a given stock. The results are qualitatively
similar using each proxy compared to those reported in this paper using the second-level aggregation, i.e.,
the aggregation of the eight stock-level proxies into a single one. The results are available from the authors
upon request.
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activities.

The remainder of this paper unfolds as follows. Section 2 presents the theoretical frame-

work. Section 3 describes the numerical analysis of the optimal investment policy, the

magnitude of the liquidity premia, and their sensitivity to changes in parameter values. Sec-

tion 4 provides empirical evidence to support the novel predictions of the theoretical model.

Section 5 concludes. We relegate to the Appendix all the technical issues, additional results,

and details on the construction of the empirical variables.

2 Theoretical Framework

We introduce proportional transaction costs in the model of Basak, Pavlova, and Shapiro

(2007). Time is continuous and there exist three assets in the economy: a risk-free bond

(S0t) and a benchmark stock (S1t) that are perfectly liquid, and a non-benchmark stock (S2t)

that is subject to transaction costs. We assume that S0t grows at a constant rate r and Sit

evolves according to the following process:

dSit = αiSitdt+ σiSitdWit (1)

for i = 1, 2, where the two standard Brownian motions W1t and W2t, defined on a filtered

complete probability space (Ω,F , P ), have constant correlation ρ ∈ [−1, 1]. The expected

returns (αi) and volatilities (σi) are assumed to be constant, like in Constantinides (1986).

We consider a mutual fund manager who invests in these three assets. She can buy

the illiquid non-benchmark stock for the price (1 + λ)S2t, and she can sell it for the price

(1− µ)S2t, where λ ≥ 0 and 0 ≤ µ < 1 represent the proportional transaction cost rates for

purchases and sales, respectively. Let Xt denote the dollar amount invested in the bond and

in the liquid stock, and let Yt denote the dollar amount invested in the illiquid stock. We

then have the following sub-wealth processes for liquid and illiquid portfolio holdings:

dXt = (rXt + ξt(α1 − r))dt+ σ1ξtdW1t − (1 + λ)dLt + (1− µ)dMt (2)

dYt = α2Ytdt+ σ2YtdW2t + dLt − dMt (3)
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where ξt in (2) is the dollar amount invested in the liquid holdings, and Lt and Mt are

non-decreasing processes which denote the cumulative amounts of purchases and sales of the

illiquid stock, respectively, which have initial values L0− = M0− = 0.

We assume the fund manager’s compensation at the end of the investment period (T )

consists of two parts: a management fee proportional to the value of assets under man-

agement (AUM), and a bonus that is determined by the fund’s performance relative to an

external benchmark. We assume that the benchmark consists of liquid stock and bond, and

is continuously rebalanced to maintain a β/(1− β) stock-bond ratio. Therefore, its value Zt

evolves according to the following process:

dZt = (r + β(α1 − r))Ztdt+ βσ1ZtdW1t (4)

Let f ≡ f(Rf
T −Rb

T ) represent the ratio of the manager’s bonus to the management fee.

Then, the manager’s total compensation at time T equals:

k
(

1 + f(Rf
T −R

b
T )
)

(XT + YT ) (5)

where k is the management fee rate, and Rf
T = lnXT +YT

X0+Y0
and Rb

T = lnZT

Z0
are the continuously

compounded gross returns over the period (0, T ) for the fund and the benchmark, respec-

tively. Since only the growth rate of the fund’s portfolio over the benchmark matters for the

calculation of the bonus, we can set Z0 = X0 + Y0 without loss of generality.

We consider a bonus function of the collar-type:

f(Rf
T −R

b
T ) =


fL if Rf

T −Rb
T < θL

fL + ψ(Rf
T −Rb

T − θL) if θL ≤ Rf
T −Rb

T < θH

fH ≡ fL + ψ(θH − θL) if Rf
T −Rb

T ≥ θH

(6)

where fL ≥ 0, ψ = (fH − fL)/(θH − θL) > 0, and θL < θH . This bonus function exhibits

a local convexity around the lower threshold θL, then increases linearly until it reaches the

upper threshold θH , above which it returns to a flat position.14

14 We have examined alternative bonus functions. The results are qualitatively similar to those we obtain
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We assume that the manager’s objective is to maximize the expected utility she derives

from the amount of total compensation at time T , which is equivalent to:

V (0, X0, Y0, Z0) = max
Θ[0,T ]

E

[
((1 + f)(XT + YT ))1−γ

1− γ

]
(7)

where γ > 0 and γ 6= 1 is the manager’s risk aversion coefficient, and Θ[0,T ] ≡ {(ξs, Ls,Ms) :

0 ≤ s ≤ T} denotes the manager’s investment policy over the period [0, T ].15

We impose borrowing and short-selling constraints in our model, and the fund manager’s

admissible investment policies are such that 0 ≤ ξt ≤ Xt and Yt ≥ 0 for all t. In practice,

mutual funds are typically subject to prohibitions against borrowing and short-selling (Al-

mazan, Brown, Carlson, and Chapman (2004)), limits on tracking-error and cash holdings

(Simutin (2014)), and style-drift restrictions such as SEC Rule 35(d)-1.

We include two stocks, liquid and illiquid, to match the empirical evidence in Huang,

Sialm, and Zhang (2011) that risk-shifters tend to hold more illiquid stocks. However, in

Section 3.3 we corroborate our findings using alternative models with a single stock, like in

Constantinides (1986).

3 Model Implications

This section presents a numerical analysis of the fund manager’s optimal policy, and the

liquidity premia implied by the model. We solve the manager’s problem numerically, since

a closed-form solution is not available.16

In our baseline model, we use the following parameter values. The expected return and

volatility of the liquid benchmark stock are chosen to match the average annual return and

using this collar specification.
15 Like in Dai, Jin, and Liu (2011), our fund manager derives utility from the gross assets rather than the

liquidated assets of the fund. This avoids trading strategies that lead to liquidation at T and helps focus
on the effect of transaction costs on interim trading. In other words, when we compare the cases with or
without transaction costs, the amount of bonuses at T are identical conditional on the same level of relative
performance. This provides a conservative estimate of the effect of transaction costs. As expected, when
the fund manager derives utility from liquidated wealth, the results are strictly stronger than the currently
reported.

16 Appendix A describes the solution method and the numerical procedure, and Appendix B discusses
equilibrium implications.
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volatility, over the period 1950-2017, of the S&P 500 index, with α1 = 9% and σ1 = 14%.

The expected return and volatility of the illiquid non-benchmark stock are chosen to match

the average annual return and volatility, over the same period, of the value-weighted portfolio

formed by the stocks in the lowest decile of market capitalization. This gives α2 = 19% and

σ2 = 24%, and a return correlation of ρ = 0.53 with the S&P 500 index. We assume that

the benchmark is fully invested in liquid stock, i.e., β = 1. The baseline transaction cost

rate is set at 1%, i.e., λ = µ = 1%. The risk-free rate is estimated from the average T-bill

return over the period 1950-2017, which is r = 4%. We set the fund manager’s risk aversion

level at γ = 5, and the investment horizon at one calendar year (T = 1).

We match the parameter values in the bonus function (6) to the empirical estimates

of Lee, Trzcinka, and Venkatesan (2019) and Ma, Tang, and Gomez (2019): θL = 0.01,

θH = 0.15, fL = 0, and fH = 1.5. These imply that, when the performance of the fund’s

portfolio in excess of the benchmark is below 1% annually, the fund manager receives no

bonus. If instead the fund’s portfolio outperforms the benchmark by at least 15% annually,

the fund manager receives a bonus that amounts to 150% of her management fee. When the

relative performance is between 1% and 15%, the amount of bonus increases linearly with

respect to relative performance.

3.1 Optimal Stock Allocations

In our model, at a given time t, the optimal policy is a function of the performance of the

fund relative to the benchmark, i.e., η = ln Xt+Yt
Zt

. Figure 1 illustrates the optimal allocations

in benchmark and non-benchmark stocks at mid-year (i.e., t = T/2). Panel A shows the case

without transaction costs (i.e., λ = µ = 0%), and Panel B shows the case with a trading cost

rate of 1% (i.e., λ = µ = 1%). Both panels show that the optimal policy entails two types

of actions: (i) to deviate from the benchmark when underperforming (η < 0), and (ii) to

lock-in the relative advantage when outperforming (η > 0). The fund manager achieves (i)

by first reducing the holdings of liquid benchmark stock in exchange for risk-free bond until

hitting the position limits. This is because the liquid stock is a more efficient risk-shifting

tool. After hitting the position limits on liquid stock, the fund manager starts overweighting

the illiquid non-benchmark stock in the portfolio. The objective of such portfolio deviations
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is to increase the likelihood that the fund will outperform the benchmark by the terminal

date, when the bonus is calculated. This is called the risk-shifting range in Basak, Pavlova,

and Shapiro (2007). The fund manager achieves (ii) by unwinding the entire position on the

illiquid non-benchmark stock and the risk-free bond to track the benchmark very closely.

This is especially the case when the relative performance approaches the upper threshold

θH .17 For extreme values of the relative performance, either positive or negative, the fund

manager follows the normal policy, which is similar to the policy in Merton (1969) for the

case without trading costs, as represented by the horizontal sections of the policy in Panel

A.

[Insert Figure 1 about here]

Panel B presents the case with transaction costs. Like in other portfolio choice models

with transaction costs (e.g., Constantinides (1986), Davis and Norman (1990), Liu and

Loewenstein (2002), Liu (2004), Chellathurai and Draviam (2007), Jang, Koo, Liu, and

Loewenstein (2007), Dai, Li, Liu, and Wang (2016)), the optimal policy is characterized by

a no-trading region for the non-benchmark stock. The no-trading region is delimited by buy

and sell boundaries, which also exhibit large swings when relative performance η switches

between positive and negative values. For extreme values of relative performance, either

positive or negative, the fund manager chooses a constant range of risk exposure to the non-

benchmark stock (see the horizontal sections of Panel B), which is independent of relative

performance, like in Constantinides (1986).

This optimal policy implies the following trading behaviour for the fund manager. When

the portfolio weight for the non-benchmark stock is pushed to the sell region (the area above

the sell boundary), then the fund manager sells this stock instantaneously to push its portfolio

17 In our baseline case, we impose the typical position limits that are pervasive in practice, such as
leverage and short-sale constraints (Almazan, Brown, Carlson, and Chapman (2004)). We highlight that,
given the baseline parameter values we use in our model, risk-shifting is not the only reason why the fund
manager holds the illiquid non-benchmark stock. This stock can also provide diversification benefits, given its
imperfect correlation with the benchmark stock in our baseline case, and it can be held for the risk premium
it offers. This is different from the models in Basak, Pavlova, and Shapiro (2007) and Dai, Goncalves-Pinto,
and Xu (2019), where the non-benchmark stock is such that it only carries idiosyncratic risk. We cannot use
such setup, because this would make it impossible to estimate the model-implied liquidity premia in Section
3.2, which is the central focus of our paper.
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weight back to the sell boundary. If the portfolio weight on the non-benchmark stock falls

into the buy region (the area below the buy boundary), the manager buys instantaneously

to push it back to the buy boundary. If the portfolio weight on the non-benchmark stock is

between the buy and sell boundaries, the fund manager is better off not trading this stock,

because the improvement in risk exposure is more than offset by the costs incurred with

trading.

The trading boundaries vary dramatically with η. It is very likely that these boundaries

will be hit due to changes in relative performance. The frequency and volume of trading in

the non-benchmark stock are then expected to increase as a result. This is in contrast with

the optimal policy in Constantinides (1986), which is independent of relative performance.

Table 1 reports some statistics for the manager’s optimal investment policy, to understand

the effects of convex incentives on trading. We present three panels for different trading cost

rates. In the first row of each panel, we present the case in which convex incentives are

absent from the fund manager’s problem. The amount of trading is tiny in this case, which

is consistent with the findings of Constantinides (1986) that even small transaction cost

charges can significantly reduce the volume and frequency of trading. For instance, in the

absence of convex incentives, and for a transaction cost rate of 1% (Panel B), the discounted

value of the transaction costs (PVTC ) paid during the investment period is only 0.001% of

the fund’s initial AUM. In addition, the fund manager trades only 0.36 times per year on

average, assuming at most two trades per business day.

[Insert Table 1 about here]

In the presence of convex incentives, the amount of trading increases dramatically, which

in turn leads to a heavy trading cost bill. For example, in Panel B, when the transaction

cost rate is 1%, in the presence of bonuses the PVTC rises to 0.481% of the fund’s initial

AUM, which is about 480 times higher than in the case without bonuses. This is indicative

that the effect of transaction costs on the manager’s derived utility is much larger in a model

with convex incentives.
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3.2 Liquidity Premia

In this section, we define liquidity premium, and decompose its sources into two parts: (i)

the part that is directly driven by the trading cost charges associated with stock turnover,

and (ii) the part that is due to suboptimal risk-shifting, as portfolio rebalancing is difficult

due to trading costs. We also examine the sensitivity of liquidity premia to changes in the

values of the input parameters.

3.2.1 Definition and Decomposition

Constantinides (1986) defines liquidity premium as the maximum expected return an investor

is willing to forgo in exchange for zero transaction costs. We define the liquidity premium in

our model in a similar way. It is the quantity δ that the fund manager is willing to subtract

from the expected return of the illiquid non-benchmark stock to reduce the transaction cost

rates µ and λ to zero. This is equivalent to the following indifference condition:

V (0, X0, Y0, Z0;µ, λ, α2) = V (0, x, y, z; 0, 0, α2 − δ) (8)

where the value function V is defined in (7). The equation above shows that we measure

the liquidity premium as of t = 0, and that the premium is attributed entirely to the illiquid

stock. We also assume that the manager builds her initial portfolio at zero cost, and relaxing

this assumption would only strengthen our results.

The manager’s utility is affected by the presence of transaction costs through two chan-

nels: (i) the payment of transaction costs directly reduces the value of AUM, and (ii) the

fund manager is forced to have a risk exposure that is suboptimal, compared to the case

without transaction costs. To differentiate these two effects, we follow Dai, Li, Liu, and

Wang (2016). We redefine the indifference condition as follows:

V A(0, X0, Y0, Z0;µ, λ, α2) = V (0, x, y, z; 0, 0, α2 − δ0)

where V A denotes the value function when (i) the manager implements the optimal trading

strategy assuming positive transaction costs and (ii) the transaction costs are waived upon
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trading. Therefore, δ0 now captures the liquidity premium that can be attributed solely to

the suboptimal risk exposure. This is contrast with δ in equation (8), which measures the

total liquidity premium. Thus, δ0/δ measures the fraction of the liquidity premium that is

due to portfolio displacement, relative to the total premium.

Table 2 reports the characteristics of the optimal trading policy (at time t = 0) and

the liquidity premia for various levels of transaction costs. To facilitate comparison, we

first present in Panel A the liquidity premia when the bonus is absent (δc). This case is

analogous to Constantinides (1986), except that we assume a shorter investment horizon, no

intermediate consumption, and the presence of a second stock that is perfectly liquid. We

find that the liquidity premia are very small in this case. For example, when the transaction

cost rate is 1% (2%), the liquidity premium to transaction cost (LPTC) ratio (i.e., δc/(λ+µ))

is 0.017 (0.009). If the fund manager is the marginal investor in this stock, her trading on

this stock is expected to command a negligible liquidity premium.

[Insert Table 2 about here]

However, in the presence of bonuses (Panel B) the liquidity premia can be very large.

For instance, assuming a 1% (2%) transaction cost rate, the liquidity premium (δ) is 2.35%

(3.58%), which translates to an LPTC ratio of about 1.175 (0.895). The last row in Panel B

shows that the liquidity premia in the presence of bonuses (δ) can be 49 to 136 times larger

in magnitude compared to the case without bonuses (δc).

Panel B also reports the maximum and minimum values for the buy and sell boundaries of

the manager’s optimal investment policy. For instance, if the trading cost rate is 1%, the buy

boundary goes from a minimum of B∗(0, η) = 0.00 to a maximum of B∗(0, η) = 0.55. Figure 1

shows that the minimum is reached when the fund’s portfolio is outperforming the benchmark

and it is optimal to lock-in the relative advantage by replicating the benchmark closely. The

maximum value is reached somewhere within the risk-shifting range. The corresponding max

and min values for the selling boundary are S∗(0, η) = 0.74 and S∗(0, η) = 0.05, respectively.

Table 2 also shows the proportion of the liquidity premium that is due to direct payments

and to portfolio distortions. For example, for a 1% transaction cost rate, the ration δ0/δ

equals 94.68% in the absence of bonuses (Panel A), and 50.77% in the presence of bonuses
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(Panel B). This implies that direct payments contribute more to liquidity premia in the

presence of bonuses, which is consistent with the results reported in Table 1.18

Panel B also shows that the costs due to portfolio displacement are can be substan-

tial in the presence of bonuses. This is because when transactions are costly to execute,

the manager’s ability to influence her future relative performance is significantly hampered.

Consequently, the manager’s ability to capture bonuses is weakened, which results in sub-

stantial costs of portfolio displacement. To verify this intuition, we perform Monte-Carlo

simulations to calculate the manager’s risk-adjusted bonus (RAB), which is defined as the

minimum amount of additional AUM that the manager requires for waiving her year-end

bonus. In addition, we consider the case in which the manager follows her optimal policy

under transaction costs, but these costs are waived. This helps isolate the effect of subopti-

mality in portfolio composition from the direct trading cost payments. Figure 2 shows that

the suboptimality in risk-shifting created by the presence of transaction costs substantially

reduces RAB. For example, when the transaction cost rate increases from 0% to 1%, RAB

decreases by 4.61%. If trading costs were not waiver, this figure would be larger.

[Insert Figure 2 about here]

Our two-stock model matches the empirical findings in Huang, Sialm, and Zhang (2011),

that risk-shifters in the mutual fund industry hold more illiquid stocks. However, our main

result that convexity in investor’s preferences generates much higher liquidity premia also

holds for a single stock. In Section 3.3 we consider other non-concave incentives derived from

prospect theory and status concerns, in which we use a single stock.

The convexity of the bonus component is the driver of the effects in our model. If we

were to consider a pure benchmarking effect (i.e., where the manager derives concave utility

from the wealth-to-benchmark value ratio, like in Binsbergen, Brandt, and Koijen (2008)),

this would not result in larger liquidity premia.

18 The relative contribution of direct payments versus portfolio distortions, in the case without bonuses
(i.e., δ0c/δc), is larger in our model compared to Dai, Li, Liu, and Wang (2016) for two main reasons. First,
we consider a relatively short investment horizon of one year, and the investor does not trade when near
maturity. As a result, the cost due to portfolio displacement in our model is larger. In contrast, they assume
a long horizon, and this effect is weaker in their model. Second, our investor can also trade a perfectly
liquid stock, which is positively correlated with the illiquid stock. This is expected to reduce her demand
for trading the illiquid stock in our model.
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3.2.2 Comparative Statics

We report comparative statics analyses for the liquidity premia with regards to a battery of

model parameters. Table 3 reports the results of such analyses, some of which we discuss

below.

[Insert Table 3 about here]

Return correlation: The correlation between the returns of benchmark and non-

benchmark stocks is an important determinant of the effectiveness of risk-shifting. Intu-

itively, stocks with low correlation with the benchmark are better tools for risk-shifting

purposes. If the correlation increases, then the benefit from risk-shifting decreases and the

fund manager trades less of the illiquid stock. This is then expected to reduce the liquidity

premia. Table 3 suggests that this is indeed the case. For example, when the return cor-

relation is increased by 10% from its baseline value of 0.53, the LPTC ratio decreases from

1.175 to 1.138.

Riskiness of the benchmark portfolio: The riskiness of the benchmark portfolio

also affects the manager’s risk-shifting incentives. To outperform a riskier benchmark the

manager needs to load more on the illiquid non-benchmark stock, as it provides some risk

unspanned by the benchmark. This in turn leads to larger liquidity premia. Table 3 shows

the changes in the LPTC ratio against changes in β, which measures the riskiness of the

benchmark portfolio. It shows that the liquidity premia increase with β. For example, for

a 80-20 stock-bond benchmark portfolio (i.e., β = 0.8), the LPTC ratio is 1.168, which

increases to 1.175 when the benchmark portfolio is fully invested in liquid stock (i.e., β = 1),

as in the baseline case.

Convexity of the bonus-performance relationship: The convexity of the bonus

function is the main driver of the fund manager’s risk-shifting behaviour. Keeping all else

constant, increasing the convexity of this function creates stronger risk-shifting incentives,

and the liquidity premia increase as a result. We can increase the convexity of the bonus-

performance relation by either shrinking the range of relative performance over which the

function exhibits an upward-sloping pattern, i.e., [θL, θH ], or by increasing the reward for

outperformance, i.e., fH . Table 3 shows that the LPTC ratio increases when we either
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reduce θH or increase fH , implying that the liquidity premia increase with the convexity of

the bonus function. This is the main prediction that we test in our empirical analysis of

Section 4.

3.2.3 Discussion on Position Limits

In our baseline model we exogenously impose the typical position limits that exist in practice

for mutual funds, such as limits on leverage and short-selling (see Almazan, Brown, Carlson,

and Chapman (2004)). It could be argued that our results are driven by such position limits.

This issue is especially critical for the liquid benchmark stock, which is a better risk-shifting

tool due to its high liquidity. In our baseline, the fund manager is restricted from borrowing

to buy the benchmark stock on margin, and is restricted from shorting that stock as well.

The manager first deviates from the benchmark by reducing the holdings of liquid bench-

mark stock in exchange for risk-free bond. This is because the liquid stock is a more efficient

risk-shifting tool. However, after hitting the position limits on the liquid stock, the fund

manager loads on the illiquid non-benchmark stock.

Therefore, we should expect that, when position limits are relaxed, the demand for illiquid

stock will decrease, and the impact of trading costs on the derived utility of the fund manager

will be weaker.

Figure 3 shows what happens when we relax the position limits on the liquid benchmark

stock. We continue to fix the position limit on the illiquid non-benchmark stock to be within

the interval [0, 1].19 However, we relax the position limit on the liquid benchmark stock to

vary within the interval [−a, 1 + a], where a ranges from 0 to 2. The results show that the

LPTC ratio decreases slightly for looser position limits on the liquid benchmark stock.

[Insert Figure 3 about here]

We conclude that position limits on the liquid benchmark stock are not the main driver

of our results.

19 If we relax the position limit of the illiquid non-benchmark stock, the results only become stronger.
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3.3 Alternative Sources of Convexity:

Reference-Dependent Utility

In our baseline model, the utility function of the fund manager is globally concave, and

the manager’s incentives stem from the convexity of her compensation contract, namely the

existence of year-end bonuses. However, in the economics literature more generally, some

utility specifications are designed to exhibit local convexity more directly. Many reference-

dependent utilities examined in the behavioural economics literature have this property. In

this section, we show that convex incentives arising from some reference-dependent utilities

can also generate high liquidity premia. Thus, the effect that we document is not restricted

to the specific model that we examine in our baseline framework.

We assume, similar to Constantinides (1986), the investor only trades in one risk-free

bond and one risky stock, but with a major difference in terms of the utility specification.

The investor’s objective is to choose her investment policies to maximize

E[U(WT ;R)] (9)

where WT is the investor’s gross wealth level at time T , and R is a reference point which

determines the investor’s utility level.20

We consider two popular forms of reference-dependent utility. First, the prospect theory

model proposed in Kahneman and Tversky (1979), is widely used in behavioural finance

studies. This utility function has the following specification:

U(W ;R) =

 (W −R)p if W ≥ R

−c(R−W )q if W < R
(10)

where 0 < p, q < 1 and c > 0. This function is defined on deviations of wealth (W ) from

the reference point (R). It is concave for gains (W ≥ R) and convex for losses (W < R). It

results in an S-shaped function with an inflexion at the reference point (R). Investors with

20 Like in our main model, we assume the investor derives utility from gross wealth level at time T , to
exclude the mechanical effect of transaction cost paymnets on wealth resulting from liquidation.
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such utility function will be risk-averse relative to gains and risk-loving relative to losses,

which leads to the well-known behavioural bias coined as disposition, where investors realize

gains quickly but ride losses.

Second, the aspiration utility examined in Diecidue and van de Ven (2008) and Lee,

Zapatero, and Giga (2018), which has the following specification:

U(W ;R) =

 W p

p
if W < R

c1
W p

p
+ c2 if W ≥ R

(11)

where 0 < p < 1, c1 ≥ 1 and c2 ≥ 0. This specification captures the idea that, besides

normal consumption, the investor also cares about her status, which is revealed through

the consumption of non-divisible goods, such as a luxury car or an apartment. Thus, the

investor’s utility will jump when her wealth reaches the level beyond which she is able to

consume the non-divisible good.

In the following analysis, the default parameter values that we use are as follows: the

risk-free rate is r = 0.04, the expected return of the risky stock is α = 0.1, the return

volatility of the risky stock is σ = 0.3, and the investor’s investment horizon is T = 1 year.

The parameters in function (10) are calibrated to the estimates of Kahneman and Tversky

(1979), as follows: p = q = 0.88 and c = 2.25. The reference point is set at the investor’s

initial wealth level W0. The parameter values in function (11) are as follows: p = 0.5,

c1 = 1.2, c2 = 0, and the reference point is set at R = 1.2W0.21

Figure 4 plots the investor’s optimal allocation to the risky stock, as a function of her

wealth level. This figure is generated in the absence of transaction costs. In both cases, we

find that the optimal allocation in the risky stock changes dramatically around the reference

point R. This implies that the investor is likely to frequently adjust her stock allocations in

response to fluctuations in wealth. In particular, when the investor’s wealth level is below

the reference point (i.e., lies in the convex region of her utility function), she increases the

stock allocation, implying a strong risk-shifting incentive. Therefore, similar to the intuition

developed in our baseline model, it is expected that the presence of transaction costs will be

21 For brevity, we omit the details of the mathematical model. They are available from the authors upon
request.
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particularly burdensome to an investor who has incentives to distort take excessive risks to

increase the odds of overcoming the reference point.

[Insert Figure 4 about here]

Figure 5 plots the LPTC ratio against the transaction cost rate. The liquidity premium

is calculated at the start of the investment period. The figure shows that, the liquidity

premium can be substantial when the investor exhibits either prospect theory utility or

aspiration utility. For example, with a transaction cost rate of 1%, the LPTC ratio is above

0.7 in the prospect theory utility case, and it is above 1.0 in the aspiration utility case. Figure

5 also shows the LPTC ratio when we increase the convexity of these utility functions. The

convexity of the prospect theory utility is increased by reducing q from 0.88 to 0.6, and

the convexity of the aspiration utility is increased by reducing R from 1.2W0 to 1.1W0. The

results suggest that greater convexity of the utility functions result in larger liquidity premia.

This is consistent with our baseline model of Section 2.

[Insert Figure 5 about here]

4 Empirical Analysis

In this section, we provide empirical evidence to support the main implications of our theo-

retical model. We show that trading costs have a positive relation with future stock returns,

especially for stocks held by mutual funds with strong risk-shifting incentives. We also show

that mutual fund risk-shifting is positively associated with portfolio turnover. However, in-

creased turnover is not the only explanation for the positive relation between trading costs

and future returns. To the best of our knowledge, the existing empirical evidence has not

yet verified any of these novel implications of our model.

4.1 Sample

To test our model, we require information on mutual funds, their quarterly share holdings,

and characteristics of the stocks they hold, especially a measure of stock trading costs. We ob-

tain mutual fund returns, investment objectives, fees, total net assets (TNA), and other fund
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characteristics from the Center for Research in Security Prices (CRSP) Survivor-Bias-Free

Mutual Fund Database. We use the Wharton Research Data Services (WRDS) MFLINKS

file to merge this database with Thomson Financial Mutual Fund Holdings (TFMFH), which

contains information on the number of shares of stock held by each mutual fund, and provides

identifiers for fund families (Wermers (2000)).22

The version of the MFLINKS file that we use in this analysis includes the mapping of

mutual funds to their portfolio holdings from 1980 to 2016. This sets the upper limit of our

sample coverage to the end of 2017, because in our analysis we use information of mutual

fund holdings with a one-year lag. However, we limit our sample to start in 2004, which is the

year when the SEC imposed a new regulation requiring more frequent (quarterly) portfolio

disclosures by mutual funds. This choice of sample coverage from 2004 to 2017 can only bias

our results against our main hypothesis. This is because such increase in the frequency of

portfolio disclosures by mutual funds had a positive effect on stock liquidity, as documented

in Agarwal, Mullally, Tang, and Yang (2015).23 In addition, in 2004 the CRSP mutual fund

database switched its data provider from Morningstar to Lipper. The overlap between these

two versions of the database is imperfect. By focusing on the period after 2004 we guarantee

consistency in the reported data.

We restrict our analysis to diversified domestic actively-managed equity mutual funds.24

Fund-level variables are aggregations across all the share classes. For instance, the Total Net

Assets (TNA) of the fund is the sum of the TNAs of all its share classes.

Reported fund objectives do not always accurately characterize a fund. Thus, following

Kacperczyk, Sialm, and Zheng (2008) and Glode (2011), we exclude funds that hold on

average less than 80% of their net assets in equity. We also exclude funds with TNA lower

than $5 million, because Elton, Gruber, and Blake (2001) show that the returns of such

22 TFMFH only reports large portfolio holdings, i.e., with a dollar value of at least $100 million. This is
unlikely to bias our results in favour of our main hypothesis, because the reported holdings are more likely
to be larger and more liquid stocks in the CRSP universe.

23 More generally, stock market liquidity has improved significantly in the more recent period. Ben-
Rephael, Kadan, and Wohl (2015) show that the liquidity premium is indiscernible from zero in the past two
decades. However, we stress that the effective trading cost estimates in our sample are not negligible, and
we are focusing our analysis on the ratio between the liquidity premium and the trading cost rate (LPTC),
and this ratio can still be large even if the liquidity premium is small.

24 We exclude international, balanced, sector, bond, money market, and index funds.
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small funds tend to be biased upwardly in the CRSP database.25

We extract stock-level information, such as prices, returns, volume, and shares outstand-

ing, from the CRSP Stock Database. We only use common stocks (i.e., share codes 10 and

11). We then merge this data with the mutual fund holdings from TFMFH. The average

number of stocks per month in our final sample is 1,877, and the average number of funds

per quarter is 1,776.

We have computed the number of stock shares held by the active mutual funds in our

final sample, as a percentage of the total shares outstanding. The time-series of the cross-

sectional average of this ownership ratio is reported in Figure 6. The graph shows that the

largest increase in ownership by active funds occurs in 2004, with a 24% increase in average

quarterly ownership compared to 2003. This result also supports our focus on the period

after 2004, because it is more likely that these funds will be marginal investors in these stocks

during this period.

[Insert Figure 6 about here]

4.2 Main Variables

The main prediction of our theoretical model is that risk-shifting in the mutual fund industry

is an important factor driving the relation between transaction costs and future stock returns,

i.e., the liquidity premium. To test this prediction, we need to identify mutual fund managers

that are more (or less) prone to engage in risk-shifting, and we need a measure of trading

costs.

Starting with the latter, we use the effective trading cost estimates of Hasbrouck (2009)

and his testing method. The data is available from the author’s website, but it ends in

2009.26 We extend his dataset until 2017, following his estimation method. Hasbrouck

(2009) performs separate analyses for NASDAQ, AMEX, and NYSE stocks. However, we

focus our analysis on NASDAQ stocks, like in Eleswarapu (1997). This is because the average

25 We require 36 months of return history for our analysis, which mitigates the issue of incubation bias
discussed in Evans (2010).

26 http://people.stern.nyu.edu/jhasbrou/Research/GibbsCurrent/gibbsCurrentIndex.html
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number of stocks in NASDAQ is three to four times larger than in the other exchanges. We

use extra dimensions for sorting stocks into portfolios, and focusing on NASDAQ allows us

to obtain around 35 stocks per portfolio. Using the stocks from the other exchanges would

result in a much lower number.

After merging all the datasets of the previous section with this dataset on effective trading

costs, our final sample has 1,760 stocks on average per cross-section.

Regarding the proxies for risk-shifting incentives, we adopt the study by Huang, Sialm,

and Zhang (2011). They measure risk-shifting of a mutual fund by comparing the risk of

their most recently disclosed portfolio with the risk of the fund’s returns in the past. If

their most recent portfolio is riskier than the fund’s returns in the past, then the fund is

taking additional risks. They use eight alternative measures of risk, including total volatility,

idiosyncratic volatility, tracking-error volatility, etc. These measures capture the various

ways that fund managers can use to change the riskiness of their portfolios, such as changing

the portfolio composition between equity holdings and cash holdings, and within equity

holdings switching between low beta and high beta stocks, or changing the idiosyncratic risk

of the portfolio, by increasing the tracking-error volatility to their benchmarks, or increasing

portfolio concentration in certain industries or styles. We provide a detailed description of

each of these eight measures in Appendix C.

We start by calculating each of these fund-level measures for every mutual fund in our

sample. Next, we aggregate each measure across all funds holding a given stock, using their

quarterly share holdings as weights. This gives us one stock-level measure for each of the

eight risk-shifting proxies. We format these measures such that large values correspond to

stronger incentives by the holders of the stock to engage in risk-shifting.

We then create a composite measure at the stock-level. We use two methods to accomplish

this. First, we use the average percentile rank across the eight measures. In December of the

prior year, we assign percentile ranks to each stock-level measure for the whole cross-section

of stocks. Then, we compute the average percentile rank across the eight measures for a

given stock. We denote this composite measure as APR.

The second composite measure uses principal component analysis. In December of the

prior year, we compute the principal components across the eight stock-level measures, and
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use the first principal component obtained from that analysis. We denote this composite

measure as FPC.27

4.3 Portfolio Statistics and Empirical Specification

In this section, we test how the risk-shifting incentives (RSI henceforth) of the stockholders

affect the relation between effective trading costs and future stock returns. We proxy for

RSI using either one of the composite measures, APR or FPC, as described above.

For this test, we adopt the methodology used in Hasbrouck (2009). This allows us to

directly compare our results with his, as we use the same effective trading cost estimates.

We start by forming portfolios based on a sequential three-way sort. First, we rank

stocks based on the average RSI in the prior year, and we form two portfolios using the

median as cutoff. Second, within each of these two portfolios, we sort stocks into quintiles

based on the beta of the stocks, which is estimated using a market model over a 36-month

lookback window. Third, within each of the ten portfolios formed with RSI and beta, we

sort stocks into quintiles based on the effective trading cost measure. In total, this three-way

sort results in 50 portfolios, and the number of stocks per portfolio is on average 35. We

study the monthly returns of these 50 portfolios over a 14-year period from 2004 to 2017,

which means our final sample includes a total of 8,400 portfolio-month observations.

In our theoretical model, we show that convex incentives increase stock turnover. This

is confirmed in the data. Table 4 shows that, when we compute RSI using APR in Panel A

(FPC in Panel B), the average turnover of the stocks in the above-median RSI portfolios

is about 66% (67%) higher than the stocks in the below-median group.

[Insert Table 4 about here]

The difference in turnover is particularly large for the portfolios of stocks with low betas.

In Panel A, the stocks in the bottom quintile of beta (i.e., beta rank equal to “Low”) exhibit

27 These aggregations are useful as we do not need to report multiple iterations of the same tests for each
of the eight stock-level proxies. We report only one test per aggregated measure. However, we have also
used the individual stock-level measures instead of the composites in our empirical analysis, and the results
are qualitatively similar. These results are available from the authors upon request.
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an average turnover that is about 143% larger in the above-median RSI group, compared

with the below-median RSI group. The turnover of the stocks in the top quintile of beta

(i.e., beta rank equal to “High”) is only about 36% larger in the above-median group. The

difference is similar in Panel B. These results are consistent with the argument in Boguth

and Simutin (2018) that low beta stocks provide lower leverage, and taking risks with such

stocks requires larger trades.

Next, we examine the relation between trading costs and future stock returns, and how

this relation is affected by convex incentives in the mutual fund industry. We regress future

returns (in excess of the risk-free rate) of the 50 portfolios on the lagged effective trading cost

measure of Hasbrouck (2009) (averaged across all stocks in each portfolio) and its interaction

with an indicator variable for above-median RSI, which we denote as DummyRSI. The

dependent variable is the equal-weighted average monthly return across the stocks within

each portfolio. The portfolio sorting variables (i.e., RSI, beta, and trading cost) are all

measured in the year prior to the year of the portfolio returns.

The full empirical specification for this test is as follows:

Ri,t+1 =γ0 + γcci,t + γdDummyRSIi,t + γcd..(ci,t ×DummyRSIi,t) (12)

+ γtTurnoveri,t + γct..(ci,t × Turnoveri,t)

+ γlLRMCi,t + +γoOwnershipi,t

+ γmβ
m
i + γsβ

smb
i + γhβ

hml
i + ε

where βm, βsmb, and βhml are the unconditional betas obtained from the Fama and French

(1993) three-factor model, estimated over the entire sample period for each portfolio. LRMC

is the log relative market capitalization (i.e., the average median-adjusted market capital-

ization for the stocks in each portfolio). The betas and LRMC were also used in Hasbrouck

(2009) as controls. We add to his baseline specification three additional controls, as well as

interactions with the effective trading cost measure c. Specifically, we include controls for

(i) Turnover, which is the average ratio of trading volume to shares outstanding across the

stocks in each portfolio, (ii) Ownership, the ratio of the number of shares held by active

mutual funds to the total number of shares outstanding, averaged across stocks in the port-
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folio, and (iii) DummyRSI, an indicator function that equals one for above-median RSI

portfolios, and zero otherwise. We interact the indicator function with the effective trading

cost (i.e., c × DummyRSI), to assess the impact of RSI on the relation between trading

costs and future stock returns. Following Hasbrouck (2009), we estimate this regression

using the Generalized Method of Moments (GMM).

4.4 Regression Results

We start by confirming the findings in Hasbrouck (2009) that effective trading costs are

strongly related to future stock returns. In columns (1) and (6) of Table 5 we report positive

and significant coefficients on the effective trading cost variable (c).

[Insert Table 5 about here]

The difference between Panels A and B is one variable used in the sequential triple sorting

to create the 50 portfolios used in the analysis. In Panel A we use APR, and in Panel B

we use FPC, as our stock-level proxy for risk-shifting incentives. This explains the slight

differences in the regression coefficients for the trading cost variable across the two panels.

The tests in columns (1) and (6) control only for the variables used in Hasbrouck (2009).

In columns (2) and (7) we control for ownership by the active funds in our sample. This

guarantees that we are comparing stocks held to the same extent by the funds in our sample.

In columns (3) and (8) we include the interaction between trading costs and the indicator

DummyRSI. We find the coefficient on the interaction to be statistically significant and

economically large. For instance, in column (3) of Panel A the interaction coefficient suggests

that, for a 1% increase in effective trading costs, portfolios in the above-median RSI group

require 1.43% higher return per month, compared to those in the below-median RSI group.

Given that the average return in the below-median group is 1.74% per month (i.e., coefficient

of c, when DummyRSI = 0), this is equivalent to 82% larger return for the above-median

RSI group. The results are even stronger in Panel B where FPC is used instead of APR.

We have shown in Table 4 that stocks held by funds with above-median RSI exhibit

higher turnover, which is consistent with our theoretical predictions. However, Lee and

Swaminathan (2000) have shown that stock return momentum is strongly affected by past
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trading volume. Specifically, they find that stocks with high (low) past turnover ratios

earn lower (higher) future returns. This explains the negative coefficient on DummyRSI in

columns (3) and (8), and suggests that we should control for stock turnover in our tests to

rule out this potential alternative driver of returns.

In columns (4) and (9), we replace DummyRSI with Turnover.28 As expected, the

coefficient on the interaction between trading costs and turnover is positive and significant.

That is, the higher the turnover, the stronger the effect of trading costs on future returns.

In columns (5) and (10), we report the results for the full specification, in which the

main variable of interest is the indicator DummyRSI and its interaction with trading costs,

but we control for turnover and its interaction with trading costs as well. This is to address

the potential concern that stocks in the above-median RSI groups could be mechanically

associated with high turnover.

We conclude that these additional controls do not explain away the amplification effect

that our RSI measures have on the relation between trading costs and future stock returns.

For instance, in column (5), the coefficient on the interaction c ×DummyRSI has a value

of 1.07, which is statistically significant at the 1% level. This implies that, keeping size,

ownership, and turnover constant, the average monthly return required by above-median

RSI portfolios is nearly double the return required by the below-median RSI group (i.e.,

the coefficient on c, when DummyRSI = 0), which is an economically large effect.

In Panel C, we include additional betas from alternative factor models. In columns (1)-(2)

and (5)-(6) we include the unconditional momentum beta (UMD Beta) from the four-factor

model of Carhart (1997) (FF4). In columns (3)-(4) and (7)-(8) we include the unconditional

betas of profitability (RMW Beta) and investment (CMA Beta) from the five-factor model

of Fama and French (2015) (FF5). Our main results remain qualitatively unchanged.

Overall, these results suggest that convex incentives in the mutual fund industry are

important determinants of the liquidity premia of stocks. This is evidence consistent with

the main implication of our theoretical model.

28 We use turnover instead of trading volume, because the former is a much less skewed variable.
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4.5 Convex Incentives and Turnover

In the decomposition exercise of Section 3.2.1, we show that a significant portion of liquidity

premium is generated by the suboptimal risk-shifting imposed by the presence of trading

costs. This suggests that the increased turnover associated with risk-shifting may not always

be the main driver of liquidity premia. To provide evidence consistent with this, we estimate

an additional model in which we use portfolio turnover as the dependent variable.

We expect to find the relation between trading costs and turnover to be more negative

for stocks held by funds with stronger risk-shifting incentives. This would be consistent with

risk-shifting leading to higher turnover for more liquid stocks. In other words, to use illiquid

stocks in their risk-shifting activities, fund managers should require additional compensation

in the form of larger future stock returns.

Table 6 reports the results of a regression model with the following specification:

Turnoveri,t+1 =γ0 + γc.ci,t + γd..DummyRSI i,t + γcd..
(
ci,t × DummyRSI i,t

)
(13)

+ γsLn(Size)i,t + γaAlphai,t + γbBetai,t + γvIdioV oli,t

+ γdDivY ieldi,t + γoOwnershipi,t + εi,t

where Turnover is the average turnover of the stocks in each of the 50 portfolios, created

following the sequential sorting procedure described above. The indicator DummyRSI and

the trading cost measure (c) are defined as in the previous section. We control for the

characteristics examined in Lo and Wang (2000): (i) the natural log of a stock’s market

capitalization, averaged across all stocks in a portfolio (Ln(Size)), (ii) the intercept coefficient

from the time-series regression of a stock’s return on the value-weighted market return,

averaged across all stocks in a portfolio (Alpha), (iii) the slope coefficient from the time-series

regression of a stock’s return on the value-weighted market return, averaged across all stocks

in a portfolio (Beta), (iv) the residual standard deviation of the time-series regression of a

stock’s return on the value-weighted market return, averaged across all stocks in a portfolio

(IdioVol), and (v) the average dividend yield of the stocks in each portfolio (DivYield).

These five characteristics have been considered important determinants of stock turnover.

In addition to these five variables, we also control for ownership by active mutual funds, as
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in the previous section.

[Insert Table 6 about here]

Table 6 shows that, the variables examined in Lo and Wang (2000) are strongly re-

lated with future turnover. But the main coefficient of interest is on the interaction (c ×

DummyRSI), which compares the effect of trading costs on turnover between stocks with

high and low convex incentives. The interaction is negative and statistically significant at the

1% level, with t-statistics ranging from −7.82 to −10.19. This suggests that trading costs

have a significantly more negative effect on stock turnover for stocks held by funds with

stronger risk-shifting incentives. These results are consistent with our theoretical results.

They imply that the amplification effect found in Table 4 cannot be fully explained by an

increase in turnover, but instead by the suboptimal risk exposure induced by the presence

of trading costs.29

5 Conclusion

In the mutual fund industry, contracts are typically incomplete and include option-like com-

ponents, which induce fund managers to engage in excessive risk-taking. We use this industry

as a laboratory to study how convex incentives created by compensation contracts affect the

liquidity premia of stocks.

Theoretically, we show that the optimal response to the convexities embedded in their

contracts is to deviate from the benchmark when underperforming, and lock-in when out-

performing. In the presence of transaction costs, the high portfolio turnover implicit in

the optimal investment strategy generates a heavy trading cost bill. Moreover, trading costs

also make it more difficult for fund managers to adjust their portfolio positions, which makes

risk-shifting less effective at capturing year-end bonuses.

29 These results on turnover can also shed some light on the apparently inconsistent findings in Hasbrouck
(2009). This prior work shows that, the coefficient on effective cost is too large (> 1) to be consistent with
a simple trading story. However, we show that, under convex incentives, suboptimal risk exposure can play
a more important role than trading expenses in explaining liquidity premia, and this can help explain the
large magnitude of the coefficients found in Hasbrouck (2009).
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We find that fund managers demand high liquidity premia to compensate for two effects:

(i) the direct trading cost payments associated with increased portfolio turnover, and (ii) the

bonuses that are lost due to the portfolio rebalancing difficulties imposed by trading costs.

Empirically, we show that the interaction between trading costs and convex incentives

is significant and of first-order importance at explaining future returns. This effect is not

driven exclusively by increased turnover, implying that it must also be driven by portfolio

distortions that are hard to undo because of trading costs, hampering fund managers’ ability

to capture year-end bonuses. Therefore, fund managers require higher future returns to be

willing to take risks with illiquid stocks.

These results suggest that convex incentives in the mutual fund industry are important

determinants of the liquidity premia of stocks. To the best of our knowledge, this is the first

time such results have been reported in the literature.
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Appendix

The content of this Appendix is as follows. Appendix A describes the method used to solve

our baseline problem. Appendix B offers a short discussion on equilibrium implications.

Appendix C describes the construction of the empirical proxies used in Section 4.

Appendix A. Solution Method to the Fund Manager’s Problem

We solve the fund manager’s problem using dynamic programming. For this purpose, we

define the value function for 0 ≤ t ≤ T as follows,

V (t, x, y, z) = max
Θ[t,T ]

E

[
[(1 + f)(XT + YT )]1−γ

1− γ
|Xt = x, Yt = y, Zt = z

]
(14)

Under regularity conditions, V (t, x, y, z) must satisfy the following Hamilton-Jacobi-

Bellman (HJB) equation (cf. Shreve and Soner (1994)):

min
{
− ∂tV − LV, ∂yV − (1− µ)∂xV, (1 + λ)∂xV − ∂yV

}
= 0 (15)

with terminal condition

V (T, x, y, z) =
1

1− γ

[(
1 + f

(
ln
x+ y

z

))
(x+ y)

]1−γ

(16)

in the solution domain Ω = {(t, x, y, z) : 0 ≤ t ≤ T, x ≥ 0, y ≥ 0, z ≥ 0}, where ∂ represents

the partial derivative operator, and the differential operator L is given by:

LV = rx∂xV + α2y∂yV + (r + β(α1 − r))z∂zV +
1

2
σ2

2y
2∂yyV +

1

2
σ2

1β
2z2∂zzV + βρσ1σ2yz∂yzV

+ sup
0≤π≤1

{ [
(α1 − r)x∂xV + βσ2

1xz∂xzV + ρσ1σ2xy∂xyV
]
π +

1

2
σ2

1x
2∂xxV π

2
}

(17)

where πt = ξt/Xt is the fraction of Xt invested in the liquid stock.

Next, we specify the boundary conditions. When Xt = 0, the manager cannot buy the
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illiquid stock due to the leverage constraint. Therefore, when x = 0 we must have:

min {−∂tV − LV, ∂yV − (1− µ)∂xV } |x=0 = 0 (18)

Similarly, when Yt = 0, the manager cannot sell the illiquid stock due to the short-selling

constraint. Therefore, at the boundary y = 0, we must have that:

min {−∂tV − LV, (1 + λ)∂xV − ∂yV } |y=0 = 0 (19)

The homogeneity of the CRRA preferences, and the linearity of (2), (3), (4) and (5)

from section 2, imply that V (t, ax, ay, az) = a1−γV (t, x, y, z) for any a > 0. Thus, by taking

a = 1
x+y

, we obtain:

V

(
t,

x

x+ y
,

y

x+ y
,

z

x+ y

)
=

1

(x+ y)1−γ V (t, x, y, z) (20)

Thus, the solution to our problem can be characterized by a three-dimensional state variable

(t, ζ, η), where ζ = y
x+y

is the portfolio weight of the illiquid stock, and η = ln x+y
z

is the

fund’s performance relative to the benchmark. We denote the left hand side of (20) by the

following:

h(t, ζ, η) = V (t, 1− ζ, ζ, e−η) (21)

and further define

ϕ(t, ζ, η) =
1

1− γ
log[(1− γ)h(t, ζ, η)] (22)

which leads to

V (t, x, y, z) =
(x+ y)1−γ

1− γ
e(1−γ)ϕ(t,ζ,η) =

[(x+ y)eϕ(t,ζ,η)]1−γ

1− γ
(23)

where ϕ(t, ζ, η) is the compounded interest rate that makes the manager indifferent between

following her optimal investment policy or receiving this fixed rate on her initial wealth x+y,

i.e., it represents the certainty equivalent rate of return.

In order to derive the equation that governs ϕ(t, ζ, η), we use the chain rule to calculate
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the partial derivatives of V through the partial derivatives of ϕ. We then obtain that ϕ(t, ζ, η)

satisfies the following equation:

min {−ϕt −Mϕ, M1ϕ, M2ϕ} = 0 (24)

in Σ = {(t, ζ, η) : 0 ≤ t ≤ T, 0 ≤ ζ ≤ 1, η ∈ R}, where

Mϕ = a0 + a1ϕζ + a2ϕη + a3(ϕζζ + γ′ϕ2
ζ) + a4(ϕηη + γ′ϕ2

η) + a5(ϕζη + γ′ϕζϕη)

+ sup
0≤π≤1

{[
b0 + b1ϕζ + b2ϕη + b3(ϕζζ + γ′ϕ2

ζ) + b4(ϕηη + γ′ϕ2
η) + b5(ϕζη + γ′ϕζϕη)

]
π

+
[
c0 + c1ϕζ + c2ϕη + c3(ϕζζ + γ′ϕ2

ζ) + c4(ϕηη + γ′ϕ2
η) + c5(ϕζη + γ′ϕζϕη)

]
π2

}
,

M1ϕ = µ+ (1− µζ)φζ + µφη,

M2ϕ = λ− (1 + λζ)φζ + λφη,

where γ′ = 1− γ, and the remaining coefficients are as follows:

a0 = r + (α2 − r)ζ −
1

2
γσ2

2ζ
2, a1 = ζ(1− ζ)(α2 − r − γσ2

2ζ),

a2 = −β(α1 − r)− ζ(r − α2 + σ2
2γζ − βρσ1σ2γ) +

1

2

(
σ2

2ζ
2 + σ2

1β
2 − 2βρσ1σ2ζ

)
,

a3 =
1

2
σ2

2ζ
2(1− ζ)2, a4 =

1

2

(
σ2

2ζ
2 + σ2

1β
2 − 2βρσ1σ2ζ

)
, a5 = −ζ(1− ζ)(βρσ1σ2 − σ2

2ζ),

b0 = (α1 − r − ρσ1σ2γζ)(1− ζ), b1 = −(α1 − r)ζ(1− ζ) + ρσ1σ2γζ(1− ζ)(2ζ − 1),

b2 = −(1− ζ)(r − α1 − γβσ2
1 + 2γρσ1σ2ζ) + (1− ζ)(ρσ1σ2ζ − βσ2

1),

b3 = −ρσ1σ2ζ
2(1− ζ)2, b4 = (1− ζ)(ρσ1σ2ζ − βσ2

1), b5 = −ζ(1− ζ)
[
κσ1σ2(2ζ − 1)− βσ2

1

]
,

c0 = −1

2
σ2

1γ(1− ζ)2, c1 = σ2
1γζ(1− ζ)2, c2 = −σ2

1γ(1− ζ)2 +
1

2
σ2

1(1− ζ)2,

c3 =
1

2
σ2

1ζ
2(1− ζ)2, c4 =

1

2
σ2

1(1− ζ)2, c5 = −σ2
1ζ(1− ζ)2.

The terminal condition is given by

ϕ(T, ζ, η) = ln (1 + f(η)) . (25)

Given the solution to equation (24) with terminal condition (25), for any given time t ∈ [0, T ],
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the spacial solution domain Σt = {(ζ, η) : 0 ≤ ζ ≤ 1, η ∈ R} splits into three regions:

(i) sell region:

SR ≡ {(ζ, η) :M1ϕ = 0};

(ii) buy region:

BR ≡ {(ζ, η) :M2ϕ = 0};

(iii) no-trading region:

NTR ≡ {(ζ, η) : ϕt +Mϕ = 0}.

Numerical Procedure:

We briefly explain the numerical technique used to solve the variational inequality described

above. We apply the standard penalty methods described in Dai and Zhong (2010). Instead

of directly solving equation (24), we consider the following penalty approximation:

ϕt +Mϕ+K(−M1ϕ)+ +K(−M2ϕ)+ = 0, (26)

where K is a large penalty parameter. In the main algorithm, we apply an iterative method

with error tolerance tol > 0, on a standard finite differences grid, with the following steps

(assume the function value at time t+ ∆t is known):

Step 1: Let i = 0, make an initial guess ϕ0(t, ζ, η) = ϕ(t+ ∆t, ζ, η).

Step 2: Find π∗i = arg max0≤π≤1 f(π, ϕi), where

f(π, ϕ) =

{[
b0 + b1ϕζ + b2ϕη + b3(ϕζζ + γ′ϕ2

ζ) + b4(ϕηη + γ′ϕ2
η) + b5(ϕζη + γ′ϕζϕη)

]
π

+
[
c0 + c1ϕζ + c2ϕη + c3(ϕζζ + γ′ϕ2

ζ) + c4(ϕηη + γ′ϕ2
η) + c5(ϕζη + γ′ϕζϕη)

]
π2

}
.
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Step 3: Solve the discretized version of the following equation:30

ϕi+1
t +M0(π∗i )ϕ

i+1 +K(−M1ϕ
i+1)+ +K(−M2ϕ

i+1)+ = 0, (27)

where the operator M0(π)ϕ is

M0(π)ϕ = a0 + a1ϕζ + a2ϕη + a3(ϕζζ + γ′ϕ2
ζ) + a4(ϕηη + γ′ϕ2

η) + a5(ϕζη + γ′ϕζϕη) + f(π, ϕ).

Step 4: If the following condition holds,

|ϕi+1 − ϕi|
max{1, |ϕi|}

< ε,

then we set ϕ(t, ζ, η) = ϕi+1(t, ζ, η). Otherwise, we set i = i+ 1 and we go back to Step 2.

Appendix B. Discussion on Equilibrium

In our model, we have assumed that fund managers take stock prices as given, and

we compute liquidity premia as the extra return that they would require to be indifferent

between trading the illiquid stock and trading its perfectly liquid counterpart. We derive

our empirical predictions from comparative statics analyses.

However, it would be interesting to extend this setting to allow for multiple fund managers

with heterogeneous incentives who can trade with one another and who can determine stock

prices endogenously. It is beyond the scope of this paper to provide such a model. We only

provide a brief discussion of its potential structure and the challenges that it would entail.

Assume a two-fund model in which the fund managers are endowed with different bench-

marks to cater to two different investors with different preferences for liquid and illiquid

assets. The more conservative benchmark would focus on the liquid asset, and the aggres-

sive benchmark would focus on the illiquid asset.

30When dealing with the nonlinear terms, Newton’s iterative method (smooth or nonsmooth) is used (cf.
Forsyth and Vetzal (2002)).
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The fund managers would be given compensation contracts with a year-end bonus com-

ponent. This would give the fund managers the motive to trade more frequently. In fact,

the incentive to deviate from the benchmark, and given the disparity in benchmarks, could

generate trades in the same asset but in opposite directions, like in the model of Goncalves-

Pinto, Sotes-Paladino, and Xu (2018). Specifically, the manager following a liquid benchmark

would deviate by taking bets with the illiquid asset, while the manager following the illiquid

benchmark would deviate by taking bets with the liquid asset. This would create trading

opportunities.

It would be difficult to solve such a model, because of the complex interdependencies

between the investment policies of the fund managers. However, we believe that the effect

of convex incentives on the relation between trading costs and expected stock returns would

be qualitatively similar to those reported in this paper. We leave this alternative framework

for future research.

In a recent paper by Buss and Dumas (2019), they propose an algorithm to synchronize

trades in a general-equilibrium setting with trading fees. They fully characterize the equilib-

rium and show that asset prices are not affected by the payment of the fees itself, but rather

by the trade-off between smoothing consumption and smoothing holdings that the traders

face. We believe that adding convex incentives to their model could potentially strengthen

the effect of fee payments on asset prices.

Appendix C. Construction of Risk-Shifting Proxies

We follow Huang, Sialm, and Zhang (2011), who study the performance consequences

of mutual funds varying the risk of their portfolios significantly over time. They propose a

holdings-based measure to capture risk-shifting propensity. Specifically, they compare the

risk of their current holdings, based on the fund’s most recently disclosed positions, with

the realized risk of the fund. They use rolling windows of 12 quarters, and several different

measures of risk for the funds and their holdings. We describe these different measures of risk

below. We use the ratio of current holdings risk to the fund’s risk as a proxy for risk-shifting
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propensity, but the results would be qualitatively similar if we were to use the difference

instead of the ratio.

All holdings volatility: This proxy uses all the portfolio holdings in the calculation

of the risk ratio. The numerator is the standard deviation of the returns of all the portfo-

lio holdings (including equity, bond, cash and others), over the prior 12 quarters, and the

denominator is the standard deviation of the fund’s realized returns over the same prior 12

quarters. If the ratio is larger than 1, then the fund is considered to be increasing the risk of

its portfolio. The return of bonds and preferred stocks is considered to be the total return of

the Barclay Capital Aggregate Bond Index, and for cash holdings and other assets, we use

the Treasury bill rate as return.

Proportion of non-equity positions: Funds can shift portfolio risk by switching be-

tween equity and non-equity holdings, where equity is assumed to be riskier. We aggregate

the portfolio proportions invested in cash, bonds, and other non-equity positions, over the

prior 12 quarters, and divide this aggregate by the most recently disclosed non-equity aggre-

gate portfolio proportion. If this ratio is smaller than 1, it means that the fund is decreasing

the proportion of non-equity holdings in its portfolio, which corresponds to taking less risk.

Equity holdings volatility: In this proxy, we consider only the riskiness of the equity

positions and ignore the non-equity positions. We compare the riskiness of the equity po-

sitions disclosed in the most recent disclosure quarter, with the riskiness of a hypothetical

portfolio that maintains the historically disclosed positions in equity holdings. If the ratio is

larger than 1, the fund is considered to be increasing the risk of its portfolio.

CAPM beta: It could be the case that fund managers change only the systematic risk

of their portfolios, by switching between low beta equities and high beta equities. We esti-

mate the market beta of every equity holding using the CAPM over the 12-quarter lookback

window, and compare the betas of the equity holdings from the most recently disclosed port-

folio, with the CAPM betas of the equity positions from the historically disclosed portfolios.
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CAPM idiosyncratic volatility: This is the standard deviation of the residuals from

the CAPM model used in the previous measure, using the same 12-quarter lookback window.

We take the CAPM idiosyncratic risk from the most recently disclosed portfolio and divide

it by its counterpart using the historically disclosed portfolios. This ratio is larger than 1 if

the fund is increasing its CAPM idiosyncratic risk.

Carhart idiosyncratic volatility: For this proxy, we compute idiosyncratic risk using

the standard deviation of the residuals from the Carhart four-factor model. The treatment

of this measure is otherwise similar to that used for its CAPM counterpart.

Tracking error (value-weighted): The tracking error volatility is the standard devi-

ation of the difference between the fund (or holdings) returns and the benchmark return.

For this proxy, we use the value-weighted total market return from CRSP as the benchmark

return. We take the tracking error of the most recently disclosed holdings and divide it by

the tracking error of the fund’s realized returns. If this ratio is larger than 1, then the fund

is increasing its tracking error volatility.

Tracking error (equal-weighted): For this proxy, tracking error volatility is computed

using the equal-weighted total market return from CRSP as the benchmark return. The

treatment of this measure is otherwise similar to that for its value-weighted counterpart.
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Table 1: Trading Characteristics and the Optimal Investment Policy

This table provides the results on some statistics of the optimal trading policy, including: the average number of
trades executed over the investment horizon (Number of Trades), the total volume of trading over the investment
horizon as a fraction of the fund’s initial AUM (Total Volume (%)), the present value of the transaction costs paid
as a fraction of the fund’s initial AUM (PVTC(%)), and the expected duration from purchase to sale (Time from
Buy to Sell). We obtained these results from 10,000 Monte Carlo simulations of the optimal investment policy in
our model. In the simulations, we assume at most two trades per business day. When calculating the expected
time duration from purchase to sale, we restrict our attention to the sample paths along which there is at least one
purchase and one sale (note that in Panel B and C, no such paths are found in the case with no convex incentives).
We report the results for both the cases with or without bonuses. The parameter values used to generate these
results are as follows: the managerial risk aversion coefficient is γ = 5; the fund manager’s investment horizon is
T = 1 year; the risk-free rate is r = 0.04; the expected value and volatility of the returns on the liquid benchmark
stock are α1 = 0.09 and σ1 = 0.14; the expected value and volatility of the returns on the illiquid non-benchmark
stock are α2 = 0.19 and σ2 = 0.24; the return correlation between the two stocks is ρ = 0.53; the benchmark
is assumed to solely consist of the liquid stock, i.e., β = 1. For the case with bonuses, the parameters in the
bonus-performance function are matched to the empirical estimates of Lee, Trzcinka, and Venkatesan (2019) and
Ma, Tang, and Gomez (2019), as follows: θL = 0.01, θH = 0.15, fL = 0, and fH = 1.5.

Number of Trades Total Volume(%) PVTC (%) Time from Buy to Sell

Panel A: λ = µ = 0.005
No Bonus Case 3.533 0.752 0.004 0.368
Bonus Case 29.482 63.060 0.309 0.161

Panel B: λ = µ = 0.01
No Bonus Case 0.360 0.083 0.001 N.A.
Bonus Case 17.973 49.089 0.481 0.181

Panel C: λ = µ = 0.02
No Bonus Case 0.001 0.000 0.000 N.A.
Bonus Case 6.647 25.143 0.495 0.392
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Table 2: Optimal Policy and Liquidity Premia

This table provides information on the optimal trading policy at the initial time t = 0, and on the liquidity premia
commanded by the fund manager, for multiple values of the transaction cost rate. Panel A reports the results for
the case without convex incentives, and Panel B represents the case with bonuses. In Panel A, S(0) and B(0) are the
levels of the sell boundary and of the buy boundary, which are independent of the performance of the fund relative
to the benchmark due to the absence of convex incentives. In Panel B, S∗(0, η) and B∗(0, η) (S∗(0, η) and B∗(0, η))
are the max (min) levels of the sell and the buy boundaries across different values of relative performance (η). In
Panel A, δc is the liquidity premium commanded by the fund manager, i.e., the maximum level of expected return
on the illiquid non-benchmark stock that the fund manager is willing to forego in exchange for zero transaction
costs. In Panel B, it is denoted as δ. The variable δ0c (δ0) is the liquidity premium exclusively due to the suboptimal
risk exposure due to the presence of transaction costs. The parameter values used to generate these results are as
follows: the managerial risk aversion coefficient is γ = 5; the fund manager’s investment horizon is T = 1 year;
the risk-free rate is r = 0.04; the expected value and volatility of the returns on the liquid benchmark stock are
α1 = 0.09 and σ1 = 0.14; the expected value and volatility of the returns on the illiquid non-benchmark stock
are α2 = 0.19 and σ2 = 0.24; the return correlation of the two stocks is ρ = 0.53; the benchmark is assumed to
solely consist of the liquid stock, i.e., β = 1. For the case with bonuses (Panel B), the parameters values for the
bonus-performance function are matched to the empirical estimates in Lee, Trzcinka, and Venkatesan (2019) and
Ma, Tang, and Gomez (2019), as follows: θL = 0.01, θH = 0.15, fL = 0, and fH = 1.5.

Panel A: No Bonus Case

λ = µ = 0.005 0.01 0.02 0.03 0.04 0.05

S(0) 0.56 0.58 0.62 0.65 0.69 0.73
B(0) 0.45 0.43 0.38 0.34 0.29 0.25
δc (%) 0.031 0.034 0.034 0.034 0.034 0.034
δ0c (%) 0.022 0.032 0.034 0.034 0.034 0.034
δc/(λ+ µ) 0.031 0.017 0.009 0.006 0.004 0.003
δ0c/δc × 100 73.02 94.68 100.00 100.00 100.00 100.00

Panel B: Bonus Case

λ = µ = 0.005 0.01 0.02 0.03 0.04 0.05

S∗(0, η) 0.72 0.74 0.77 0.8 0.82 0.84
S∗(0, η) 0.05 0.05 0.06 0.06 0.07 0.08
B∗(0, η) 0.57 0.55 0.51 0.44 0.35 0.28
B∗(0, η) 0.01 0.00 0.00 0.00 0.00 0.00
δ (%) 1.507 2.349 3.579 4.204 4.534 4.684
δ0 (%) 0.724 1.193 2.551 3.571 4.284 4.613
δ/(λ+ µ) 1.507 1.175 0.895 0.701 0.567 0.468
δ0/δ × 100 48.00 50.77 71.29 84.93 94.50 98.49
δ/δc 49.22 69.03 104.28 122.50 132.10 136.49
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Table 3: Comparative Statics

This table provides information on the optimal trading policy at the initial time t = 0, and on the liquidity premia
commanded by the fund manager, for multiple values of the model parameters. Panel A reports the results for
the case without bonuses, and Panel B represents the case with bonuses. In Panel A, S(0) and B(0) are the
levels of the sell and the buy boundaries, which are independent of the performance of the fund relative to the
benchmark due to the absence of convex incentives. In Panel B, S(0, 0) and B(0, 0) are the levels of the sell and
buy boundaries at the initial time t = 0, with the value of relative performance set to zero (η = 0). In Panel A, δc is
the liquidity premium commanded by the fund manager, i.e., the maximum level of expected return on the illiquid
non-benchmark stock that the fund manager is willing to forego in exchange for zero transaction costs. In Panel B
it is denoted as δ. The parameter values used to generate the baseline results are as follows: the managerial risk
aversion coefficient is γ = 5; the fund manager’s investment horizon is T = 1 year; the risk-free rate is r = 0.04;
the expected value and volatility of the returns on the liquid benchmark stock are α1 = 0.09 and σ1 = 0.14; the
expected value and volatility of the returns on the illiquid non-benchmark stock are α2 = 0.19 and σ2 = 0.24; the
return correlation of the two stocks is ρ = 0.53; the benchmark is assumed to solely consist of the liquid stock,
i.e., β = 1. For the case with bonuses (Panel B), the parameters values for the bonus-performance function are
matched to the empirical estimates in Lee, Trzcinka, and Venkatesan (2019) and Ma, Tang, and Gomez (2019), as
follows: θL = 0.01, θH = 0.15, fL = 0, and fH = 1.5. In each panel, the transaction costs rates are λ = µ = 0.01.

Panel A: No Bonus Case Panel B: Bonus Case

S(0) B(0) δc
λ+µ S(0, 0) B(0, 0) δ

λ+µ
δ
δc

Base case 0.58 0.43 0.017 0.69 0.21 1.175 69.03
γ × 1.1 0.53 0.39 0.020 0.60 0.17 1.221 59.99
γ × 0.9 0.64 0.48 0.013 0.80 0.26 1.111 84.13
ρ× 1.1 0.59 0.44 0.020 0.69 0.21 1.138 55.62
ρ× 0.9 0.56 0.42 0.018 0.69 0.20 1.207 68.59
α2 × 1.1 0.65 0.52 0.018 0.74 0.25 1.129 61.39
α2 × 0.9 0.49 0.34 0.018 0.63 0.15 1.238 68.58
σ2 × 1.1 0.47 0.33 0.027 0.59 0.16 1.314 48.70
σ2 × 0.9 0.71 0.57 0.010 0.82 0.27 1.040 102.68
β × 0.9 0.58 0.43 0.017 0.72 0.23 1.172 68.90
β × 0.8 0.58 0.43 0.017 0.75 0.25 1.168 68.65
θH + 1% 0.58 0.43 0.017 0.69 0.21 1.144 67.25
θH − 1% 0.58 0.43 0.017 0.69 0.20 1.207 70.95
fH = 2.5 0.58 0.43 0.017 0.68 0.16 1.401 82.34
fH = 0.5 0.58 0.43 0.017 0.68 0.31 0.713 41.90
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Table 4: Portfolio Statistics

This table reports summary statistics for 18 out of 50 portfolios of stocks used in our analysis. Assignment of a
stock to a particular portfolio in a given test year depends on three criteria: (1) the average RSI in the previous
year (two groups), (2) the Gibbs Beta in the previous year (five groups), and (3) the Gibbs c in the previous year
(five groups). The Gibbs Beta and c measures are estimated following Hasbrouck (2009). In Panel A, the RSI
measure is computed using APR, which is the average percentile rank across the all the stock-level proxies. In De-
cember of the prior year, we assign percentile ranks to each stock-level proxy for the whole cross-section of stocks.
Next, we compute the average percentile rank across the proxies for a given stock. In Panel B, the RSI measure
is computed as FPC, which is the first principal component across all stock-level proxies from Huang, Sialm, and
Zhang (2011). We report both groups of RSI, but only the quintiles 1 (Low), 3 (Mid), and 5 (high) of Beta and c.
The table reports time-series averages of equal-weighted portfolio means. The sample covers the period 2004-2017.

Panel A: Average Percentile Ranks

APR Beta Rank c Rank Ret Beta c LRMC # Stocks Turnover

Below-Median

Low
Low 0.0058 0.3697 0.0036 -0.8525 34 0.5511
Mid 0.0062 0.3345 0.0089 -1.2858 35 0.4900
High 0.0125 0.3062 0.0221 -2.1328 34 0.5862

Mid
Low 0.0055 0.9186 0.0021 1.1626 35 1.1228
Mid 0.0068 0.8564 0.0049 -0.3693 35 1.1606
High 0.0091 0.6861 0.0145 -1.6287 33 1.1676

High
Low 0.0070 1.4209 0.0026 1.3462 36 1.7232
Mid 0.0103 1.4890 0.0047 0.4184 35 2.0072
High 0.0025 1.3576 0.0095 -0.3038 34 2.1495

Above-Median

Low
Low 0.0065 0.7964 0.0016 1.9815 35 1.5712
Mid 0.0069 0.7814 0.0035 0.3832 35 1.5073
High 0.0137 0.5298 0.0108 -1.1912 35 0.8678

Mid
Low 0.0051 1.1453 0.0016 2.4809 36 1.9598
Mid 0.0052 1.1928 0.0028 1.4811 36 2.2065
High 0.0103 1.2001 0.0054 0.4984 36 2.0397

High
Low 0.0076 1.4966 0.0023 1.8912 37 2.3715
Mid 0.0096 1.6078 0.0039 1.1861 36 3.0415
High 0.0081 1.5870 0.0071 0.6223 36 2.5854

Panel B: First Principal Component

FPC Beta Rank c Rank Ret Beta c LRMC # Stocks Turnover

Below-Median

Low
Low 0.0053 0.3640 0.0036 -0.8550 34 0.5356
Mid 0.0065 0.3395 0.0089 -1.2590 35 0.4976
High 0.0134 0.3015 0.0220 -2.1073 34 0.5855

Mid
Low 0.0065 0.9153 0.0021 1.1499 35 1.1296
Mid 0.0085 0.8528 0.0049 -0.3800 35 1.1921
High 0.0096 0.6897 0.0143 -1.6235 33 1.1976

High
Low 0.0075 1.4312 0.0026 1.3102 36 1.6894
Mid 0.0091 1.4778 0.0047 0.4043 36 1.9745
High 0.0033 1.3651 0.0095 -0.2974 34 2.1099

Above-Median

Low
Low 0.0067 0.8018 0.0016 1.9925 35 1.5780
Mid 0.0112 0.7831 0.0036 0.3081 35 1.5194
High 0.0136 0.5075 0.0115 -1.2875 35 0.8728

Mid
Low 0.0053 1.1430 0.0016 2.4804 36 1.9438
Mid 0.0061 1.1863 0.0028 1.5082 35 2.2534
High 0.0114 1.2023 0.0055 0.4774 36 2.0752

High
Low 0.0068 1.4926 0.0023 1.8957 37 2.4093
Mid 0.0088 1.6089 0.0039 1.1447 36 2.9779
High 0.0076 1.5991 0.0071 0.6194 36 2.5898
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Table 6: Risk-Shifting and Turnover

This table reports the results of a regression of portfolio turnover on lagged trading costs, lagged risk-shifting
incentives, and their interaction. We use the methodology in Hasbrouck (2009). The dependent variable is
the monthly turnover (i.e., the ratio of trading volume to the number of shares outstanding) of each portfolio
in the year after formation (equal-weighted across the stocks in each portfolio). To assess the impact of the
risk-shifting on the relation between trading costs and future turnover, the regressions include the indicator
DummyRSI and its interaction with the effective trading cost. We control for several stock characteristics
that are important determinants of stock turnover, following Section 4.1 of Lo and Wang (2000). Specifically,
we control for (i) the natural log of a stock’s market capitalization, averaged across all stocks in a portfolio
(Ln(Size)), (ii) the intercept coefficient from the time-series regression of a stock’s return on the value-weighted
market return, averaged across all stocks in a portfolio (Alpha), (iii) the slope coefficient from the time-series
regression of a stock’s return on the value-weighted market return, averaged across all stocks in a portfolio
(Beta), (iv) the residual standard deviation of the time-series regression of a stock’s return on the value-weighted
market return, averaged across all stocks in a portfolio (IdioVol), and (v) the average dividend yield of the
stocks in each portfolio (DivYield). In some specifications, we also control for Ownership, which is the number
of shares held by active funds divided by the shares outstanding. t-statistics are reported in parenthesis and
are computed using GMM standard errors that correct for estimation error in the unconditional betas and
for heteroskedasticity, and ∗, ∗∗, and ∗ ∗ ∗ represent significance at the 10%, 5%, and 1% levels, respectively.

APR FPC

(1) (2) (3) (4)

c 0.5981* 0.1073 0.1226 -0.1305
(1.81) (0.34) (0.27) (-0.29)

DummyRSI 0.0489*** 0.0350*** 0.0714*** 0.0417***
(23.05) (16.59) (26.22) (11.14)

c × DummyRSI -2.5418*** -2.6847*** -4.0317*** -3.1371***
(-7.82) (-8.50) (-10.19) (-7.94)

Ln(Size) 0.0253*** 0.0093*** 0.0141*** 0.0070***
(26.61) (7.30) (11.66) (5.04)

Alpha 0.4149 0.1572 0.7728 0.5143
(1.32) (0.49) (1.34) (0.88)

Beta 0.0652*** 0.0600*** 0.0841*** 0.0771***
(13.13) (11.90) (11.06) (10.02)

IdioVol 0.3327*** 0.3309*** 0.1505*** 0.1808***
(9.34) (9.17) (2.94) (3.52)

DivYield -0.4351** -0.5729*** -0.5455*** -0.6428***
(-2.49) (-3.45) (-2.92) (-3.49)

Ownership 0.2302*** 0.1793***
(17.17) (10.23)

Intercept -0.3090*** -0.1389*** -0.1658*** -0.0934***
(-22.28) (-8.62) (-9.61) (-5.06)

Observations 8,400 8,400 8,400 8,400
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Figure 1: Optimal Stock Allocations

This figure shows the fund’s optimal allocation to the benchmark stock and the non-benchmark
stock, as a function of the fund’s performance relative to the benchmark, when the bonuses have a
collar specification. This is a snapshot of the policy at mid-year (t = 0.5). Panel A shows the case
without transaction costs (λ = µ = 0), and Panel B shows the case with a transaction cost rate of
1% (λ = µ = 1%). In Panel A, the fund trades continuously to maintain the optimal exposures
on the benchmark stock (dashed line) and the non-benchmark stock (solid line). In Panel B, the
fund only trades the non-benchmark stock when the allocation on this stock is either above the
sell boundary (solid line) or below the buy boundary (dashed line). The dotted line in Panel B
represents the average allocation on the benchmark stock. The parameter values used to generate
these results are as follows: the managerial risk aversion coefficient is γ = 5; the fund manager’s
investment horizon is T = 1 year; the risk-free rate is r = 0.04; the expected value and volatility
of the returns on the liquid benchmark stock is α1 = 0.09 and σ1 = 0.14; the expected value and
volatility of the returns on the illiquid non-benchmark stock is α2 = 0.19 and σ2 = 0.24; the return
correlation of the two stocks is ρ = 0.53; the benchmark is assumed to be fully invested in the liquid
stock, i.e., β = 1; the parameters in the bonus-performance function are matched to the empirical
estimates of Lee, Trzcinka, and Venkatesan (2019) and Ma, Tang, and Gomez (2019), as follows:
θL = 0.01, θH = 0.15, fL = 0, and fH = 1.50.
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Figure 2: Trading Costs and Reduction in Risk-Adjusted Bonuses

This figure shows the decrease in the manager’s risk-adjusted bonuses (RAB), which is defined as
the minimum amount of additional AUM that the manager requires for waiving her bonuses, due to
the presence of transaction costs on the non-benchmark stock. The black-coloured bars represent
the total decrease in RAB, and the grey-coloured bars represent the decrease in RAB exclusively
due to the suboptimal risk exposure caused by the presence of transaction costs (i.e., the trading
costs are waived). The remaining parameter values used to generate these results are as follows:
the managerial risk aversion coefficient is γ = 5; the fund manager’s investment horizon is T = 1
year; the risk-free rate is r = 0.04; the expected return and the volatility of returns for the liquid
benchmark stock are α1 = 0.09 and σ1 = 0.14, respectively; the expected return and the volatility
of returns for the illiquid non-benchmark stock are α2 = 0.19 and σ2 = 0.24, respectively; the
return correlation of the two stocks is ρ = 0.53; the benchmark is assumed to be fully invested
in the liquid stock, i.e., β = 1; the parameters of the bonus function are as follows: θL = 0.01,
θH = 0.15, fL = 0, and fH = 1.5.
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Figure 3: Relaxing the Position Limits on the Liquid Benchmark Stock

This figure shows the liquidity premium to transaction cost (LPTC) ratio for different position limits
on the benchmark stock. We fix the position limit on the illiquid non-benchmark stock to be within
the interval [0, 1], but we relax the position limit on the liquid benchmark stock to fall in the interval
[−a, 1 + a], where a ranges from 0 to 2 (i.e., the x-axis in the figure). The remaining parameter
values used to generate these results are as follows: the managerial risk aversion coefficient is γ = 5;
the fund manager’s investment horizon is T = 1 year; the risk-free rate is r = 0.04; the expected
value and volatility of the returns on the liquid benchmark stock is α1 = 0.09 and σ1 = 0.14; the
expected return and the volatility of the returns of the illiquid non-benchmark stock are α2 = 0.19
and σ2 = 0.24, respectively; the return correlation of the two stocks is ρ = 0.53; the benchmark
is assumed to be fully invested in equity, i.e., β = 1; the parameters of the bonus-performance
function are matched to the empirical estimates of Lee, Trzcinka, and Venkatesan (2019) and Ma,
Tang, and Gomez (2019), as follows: θL = 0.01, θH = 0.15, fL = 0, and fH = 1.5.
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Figure 4: Optimal Trading Strategy with Non-Concave Utility Functions

This figure shows the optimal allocation in the stock at time t = 0.5, as a function of the investor’s
wealth level, when using the prospect theory utility function (Panel A) or the aspiration utility
(Panel B). The parameter values used to generate these results are as follows: the investor’s in-
vestment horizon is T = 1 year; the risk-free rate is r = 0.04; the expected value and volatility of
the returns of the risky stock are α = 0.1 and σ = 0.3, respectively; the parameters in the prospect
theory utility function (i.e., equation (10)) are calibrated to the estimates of Kahneman and Tver-
sky (1979), as follows: p = q = 0.88, c = 2.25, and the reference point is set at the investor’s initial
wealth level, i.e., R = W0; the parameters in the aspiration utility function (i.e., equation (11)) are
set as follows: p = 0.5, c1 = 1.2, c2 = 0, and the reference point is set at R = 1.2W0.
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Figure 5: Non-Concave Utility Functions and Liquidity Premia

This figure shows the liquidity premium commanded by the investor when using the prospect
theory utility (Panel A) or the aspiration utility (Panel B). The parameter values used to generate
these results are as follows: the investor’s investment horizon is T = 1 year; the risk-free rate
is r = 0.04; the expected value and volatility of the returns of the risky stock are α = 0.1 and
σ = 0.3, respectively; the parameters in the prospect theory utility function (i.e., equation (10))
are calibrated to the estimates of Kahneman and Tversky (1979), as follows: p = q = 0.88 (q = 0.6
for the case with greater convexity), c = 2.25, and the reference point is set at the investor’s initial
wealth level, i.e., R = W0; the parameters in the aspiration utility function (i.e., equation (11)) are
set as follows: p = 0.5, c1 = 1.2, c2 = 0, and the reference point is set at R = 1.2W0 (R = 1.1W0

for the case with greater convexity).
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Figure 6: Stock Ownership by Active Mutual Funds

This figure plots the ownership by active mutual funds for each quarter, for the period 1982-2016.
For each stock, we take the number of shares held by active mutual funds, and divide it by the
total number of shares outstanding. Next, we take the cross-sectional average of this ownership
ratio across all stocks in each quarter, and plot the time-series of this cross-sectional average. This
only includes stocks listed on the NASDAQ.

55


	Introduction
	Theoretical Framework
	Model Implications
	Optimal Stock Allocations
	Liquidity Premia
	Definition and Decomposition
	Comparative Statics
	Discussion on Position Limits

	Alternative Sources of Convexity: Reference-Dependent Utility

	Empirical Analysis
	Sample
	Main Variables
	Portfolio Statistics and Empirical Specification
	Regression Results
	Convex Incentives and Turnover

	Conclusion

