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Abstract

We study a dynamic general equilibrium model with costly-to-short stocks and

heterogeneous beliefs. Costly short sales drive a wedge between the valuation

of assets that promise identical cash flows but are subject to different trading

arrangements. Specifically, we show that the price of an asset is given by the

risk-adjusted present value of future cash flows which include both dividends and

an endogenous lending yield. Once returns are appropriately adjusted for lending

fees, stocks with low and high shorting costs offer similar risk-return tradeoffs,

shedding light on recent findings about their explanatory power in the cross-section

of returns.
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1 Introduction

Securities lending and borrowing is a critical function that makes financial markets more

efficient through improved liquidity and price discovery. In the U.S. alone, short selling

accounts for more than a quarter of trading volume in the stock market and the value

of securities on loans has recently surpassed $1.4trillion (Gensler 2021). Historically, the

primary suppliers of shares to loan have mostly been investment firms, pension funds,

insurance companies, passive funds, and exchange traded funds (ETFs). However, the

practice of securities lending is now extending to non institutional investors because it can

be a significant revenue source that often offsets management fees and transaction costs.1

For example, Kashyap, Kovrijnykh, Li, and Pavlova (2020) report that securities lending

contributed 5% of the total revenues of both BlackRock and State Street in 2017 while

the data provider DataLend (2022) reports that the global revenues of security lenders

have been growing steadily in the last decade to reach a level in excess of $9billion in 2021.

As a last indication of the current importance of securities lending, we note that the U.S.

Securities and Exchange Commission Rule 10c–1, which is currently under review, will

soon create a new reporting and disclosure regime for all participants in the securities

lending market (Gensler 2021).

Despite the crucial importance of short selling and the extensive literature on the

effects of short sales constraints on asset returns,2 there are only few studies that explicitly

analyze the role of securities lending in the price formation process.3 In particular, there is

currently no commonly accepted theoretical model for the joint endogenous determination

of asset returns and lending fees. We contribute to bridging this gap by developing a

1See, e.g., Table 3 in iShares Report on Securities Lending. In addition, a number of important
broker-dealers have recently started lending programs that allow retail customers to earn incremental
income. See, for example, the Fully Paid Lending program of Fidelity and the similar programs put in
place by TDAmeritrade/Charles Schwab, BNY Mellon, and E–Trade among others.

2See among others Seneca (1967), Miller (1977), Harrison and Kreps (1978), Figlewski (1981),
Diether, Malloy, and Scherbina (2002), Jones and Lamont (2002), Mitchell, Pulvino, and Stafford (2002)
Scheinkman and Xiong (2003), Ofek, Richardson, and Whitelaw (2004), and Atmaz and Basak (2019) for
key contributions, and either Reed (2013) or Jiang, Habib, and Hasan (2020) for comprehensive surveys.

3The short list of such studies includes Duffie (1996), D’Avolio (2002), Duffie, Gârleanu, and Pedersen
(2002), Cohen, Diether, and Malloy (2007), Hanson and Sunderam (2014), Drechsler and Dreschler (2018)
(henceforth DD), Nutz and Scheinkman (2020) and, since the release of our first draft, the work of Atmaz,
Basak, and Ruan (2021), Gârleanu, Panageas, and Zheng (2021), and Chen, Kaniel, and Opp (2022)
which we briefly review below.
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tractable dynamic general equilibrium model of asset prices and lending fees with a focus

on the return-augmenting effect of securities lending.

Specifically, we consider a continuous-time Lucas economy populated by two groups

of investors who have logarithmic utility and heterogenous dogmatic beliefs about the

growth rate of the economy.4 The financial market includes a riskless asset, and two

long-lived risky assets that each represent a claim to a constant fraction of the aggregate

dividend. The first risky asset (asset 1) can be shorted at a cost that is to be determined

in equilibrium, while the second risky asset (asset 2) cannot be shorted. The assumption

that the two risky assets have proportional dividends implies that they are Siamese twins

(see e.g., Froot and Dabora (1999) and De Jong, Rosenthal, and Van Dijk (2009)). This

assumption serves two purposes. First, it allows us to easily account for the fact that the

shares of a given stock are often not all available for lending because of variety of reasons

that include the existence of different share classes (Mei, Scheinkman, and Xiong 2009),

dual or cross-listings as in the case of ADRs (Blau, Van Ness, and Warr 2012), or the

occurence of a partial public offering (Lamont and Thaler 2003). Second, and perhaps

more importantly, this assumption allows us to study the effect of costly short sales on

ex-ante identical assets within a single general equilibrium model where all markets clear

rather than across different models.

An investor who wants to short a stock must first borrow the required shares from

another investor who holds a long position. In line with the empirical evidence (D’Avolio

2002, Baklanova, Copeland, and McCaughrin 2015, Gensler 2021, Chen et al. 2022) we

assume that the securities lending market is intermediated by lending agents. In our

model, investors wanting to go short over the next instant are randomly matched with

one of the lending agents. Each lending agent sets a shorting fee to maximize the flow of

shorting revenues taking as given the aggregate short demand schedule of the investors

who are matched with her. Once the terms of the short transactions are set, each lending

agent borrows the required shares from the custodian bank that holds securities on behalf

of long investors, lends them over an infinitesimal time interval, and transfers back the

4The assumption of a constant disagreement simplifies the solution of the model by fixing the
identity of the optimist and pessimist, and thereby limiting the number of state variables. Moving
to a richer environment with a stochastic disagreement leads to a more cumbersome, yet fully explicit,
characterization of the equilibrium but does not affect the underlying economics. We develop such an
extension in Appendix B.
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securities and the induced shorting fees to the custodian bank who in turn redistributes

them on a value weighted basis to long investors. This approach is, to the best of our

knowledge, new to the literature and allows us to easily integrate costly short sales into

an otherwise standard dynamic asset pricing model. Our modelling implies that the

shortable asset 1 entitles its owners to a convenience yield that can be endogenously

determined in equilibrium by matching the aggregate flows of lending fees paid and

received by investors.

If asset 1 could be shorted at no cost, then the short sale constraint on asset 2 would

have no impact and, as a result, pricing would be linear in the sense that both assets

would offer the same price-dividend ratio. By contrast, our analysis shows that costly

short sales drive a wedge between the valuation of the two assets and thereby result in

nonlinear pricing. In particular, the value of asset 1 in our model represents a fraction of

the market portfolio that is strictly greater than its share of dividends and which varies

endogenously across times and states to reflect the impact of the short selling frictions at

play in the model. This contribution formalizes, within a general equilibrium model, the

intuition in Cochrane (2002) and Cherkes, Jones, and Spatt (2013) according to which the

valuation of a shortable asset includes not only the present value of its future dividends

but also the present value of future lending revenues. Perhaps of greater interest, this

nonlinearity provides a rational explanation for the mispricing observed in certain famous

equity carve-outs (Lamont and Thaler 2003), such as the partial spin-off of Palm by 3Com

that we use to quantitatively illustrate the implications of the model.

Our theoretical framework provides a backdrop to the recent empirical findings of

Beneish, Lee, and Nichols (2015) and DD who document that stocks with high lending

fees exhibit low average excess returns that cannot be explained by standard factor models

such as the three- and four-factor models of Fama and French (1993) and Carhart (1997).

In particular, DD argue that these negative excess returns are compensation for the

systematic risk borne by the small fraction of investors who account for most of the

shorting activity. They refer to this finding as the shorting premium and construct a

portfolio risk factor labeled CME (for cheap-minus-expensive to short) that earns the

corresponding abnormal return. Our model offers an alternative explanation for these

findings that is aligned with the literature (e.g., Fama and French 2010) that questions the
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possibility to generate abnormal returns by stock picking, and argues that the estimated

alphas may result from return-augmenting activities like securities lending. Specifically,

our framework implies that stock returns satisfy a modified CAPM that includes an

explicit downward adjustment for lending fees and, therefore, predicts that lending fees

should not have any significant impact on the cross-section of returns provided that an

appropriate correction is applied before running the estimation.

To empirically test this prediction, we use a sample similar to that of DD in which

monthly stock returns from CRSP and accounting information from Compustat are

matched with shorting cost and utilization measures provided by Markit Securities Fi-

nance. We sort firms into decile portfolios according to their average shorting costs

and estimate on these portfolios the standard three- and four-factor models of Fama

and French (1993) and Carhart (1997). As in DD we find that the unadjusted stock

returns in our sample exhibit a significant shorting premium. Indeed, the CME portfolio

obtained by going long in stocks of decile 1 and short in stocks of decile 10 produces

strongly significant abnormal returns of 64bps/month relative to the three-factor model

and 56bps/month relative to the four-factor model.

We then use the shorting costs and utilization measure data provided by Markit

Securities Finance to adjust returns for the lending revenues and shorting costs as indi-

cated by our model and repeat the estimation of the two factor models on these adjusted

returns. The results are fully aligned with the predictions of our theoretical model. In

particular, we find that, after adjustment, the estimated alpha for decile 10 relative to

the four-factor model jumps up from a statistically significant value of −37bps/month to

a non-significant value of −15bps/month. Furthermore, this negative abnormal return

almost exactly offsets the positive abnormal return on the first decile and, as a result, the

CME portfolio no longer exhibits any abnormal return relative to the adjusted four-factor

model. Similar results hold relative to the three-factor model and these results continue

to hold relative to either model even if we only use the 50% of decile 10 stocks that are

most expensive to short in our construction of the CME portfolio.
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Related literature

To capture the fact that locating shares to borrow may be a time consuming process,

Duffie et al. (2002) develop a model with a single stock in which search costs and

bargaining over fees generate a deterministic price process that includes the present value

of the lending fees that accrue to holders of long positions. Vayanos and Weill (2008)

extend the search model of Duffie et al. (2002) to include two assets with different lending

fees and show that the resulting equilibrium can help understand phenomena such as the

different pricing of on-the-run and off-the-run Treasury bonds. By contrast, we study an

otherwise frictionless stochastic general equilibrium model where positive loan fees arise

due the presence of an intermediated securities lending market.

Our paper is naturally related to the large body of theoretical literature that studies

the impact of shorting constraints in trading models where agents have heterogenous

beliefs. Earlier contributions in this literature, including the seminal papers of Miller

(1977) and Harrison and Kreps (1978), feature discrete-time partial equilibrium models

with risk-neutral investors in which the combination of heterogenous beliefs with the

impossibility of short selling gives rise to speculative episodes where the asset price exceeds

its fundamental value to the most optimistic investor. Scheinkman and Xiong (2003)

extend the original setting of Harrison and Kreps (1978) to continuous-time and use it

to study the occurrence and properties of bubbles. Detemple and Murthy (1997) and,

later, Gallmeyer and Hollifield (2008) study a similar problem but in a dynamic general

equilibrium setting with risk-averse investors and show that the imposition of a short

sale ban may result in either a price increase or a price decrease relative to a frictionless

model. More recently, Nutz and Scheinkman (2020) study a continuous-time version of

the model of Harrison and Kreps (1978) in which agents can short the asset subject

to exogenous quadratic costs but these costs are dissipated and thus do not accrue to

holders of long positions. Our paper advances this literature by proposing a tractable way

to model the endogenous determination of securities lending fees in a dynamic general

equilibrium setting where lending fees are rebated to holders of long positions.

Our focus and contributions markedly differ from Atmaz et al. (2021) who develop

a CARA-Normal model with heterogeneous beliefs, two independent risky assets and a
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riskless asset with exogenous return. In their model, stock prices and shorting costs are

linear functions of two Gaussian processes that represent dividends and the stochastic

disagreement among agents. Therefore, prices and shorting costs can be negative and,

perhaps of greater concern, the model does not rule out situations where some agents

that are a priori assumed to be long only end up holding short positions without paying

the corresponding cost. By contrast, prices and shorting fees are nonnegative in our

framework and, rather than independent assets, we consider Siamese twin stocks which

allows us to elicit the premium associated with the possibility of shorting an asset and

facilitate a clear identification in our empirical exercise.

Perhaps closest to us is Gârleanu et al. (2021) who also propose a continuous-time

general equilibrium model that features logarithmic agents with heterogenous beliefs and

costly-to-short stocks. The main difference with our paper resides in the modelling of

the shorting friction. Specifically, Gârleanu et al. (2021) take the shorting cost as an

exogenously given function of short interest that they interpret as a cost of matching

between competitive brokers and dealers. They show that this modelling produces

multiple equilibria and use this feature to analyze situations, such as the recent GameStop

episode, where fears among short sellers lead to self-fulfilling run-type behavior. By

contrast, we construct a model where securities lending market is intermediated by

lending agents with some degree of market power and show that this modelling—which

is consistent with existing market conditions in the U.S—produces a unique equilibrium

that is not nested among the multiple equilibria of Gârleanu et al. (2021) because in our

model the endogenous shorting cost cannot be expressed as a deterministic function of

the endogenous short interest. More recently, Chen, Kaniel, and Opp (2022) introduce

asymmetric information in a partial equilibrium version of our model to evaluate the

implications of non-competitive lending fees. They quantify price wedges due to the

incremental impact that lenders assign to stocks due to the fee income, similar to the

effect we capture endogenously by using assets 1 and 2 in our model. Their empirical

results show a significant impact of fees on stock valuations, particularly for small and

micro-cap stocks, similar to our empirical exercise where we find that shorting costs and

lending yields are negatively related to firm size.

7



Our work is also related to the broad literature on rational models of limits to

arbitrage. See Gromb and Vayanos (2010) for a survey. We highlight Basak and Croitoru

(2000) who study a dynamic general equilibrium model with a risky asset and a derivative

in zero net supply to show that mispricing can arise between two securities that carry

the same risk, if agents are subject to portfolio constraints that prevent them from

exploiting the induced arbitrage opportunity. Banerjee and Graveline (2014) obtain

similar conclusions in a static CARA-Normal model with quasi-redundant assets and

costly short sales. By contrast, we study the implications of costly shorting in a dynamic

setting where all risky assets are in positive supply so that both expected returns and

volatilities are endogenously determined.

Other contributions to the study of lending fees include Duffie (1996), Krishnamurthy

(2002), and Blocher, Reed, and Van Wesep (2013). More recently, Nezafat and Schroder

(2022) study the role of private information in the equity lending market in a static

rational expectations model with endogenous loan fees. There is also a growing literature

on strategic short selling that studies the role of short selling in the transmission of

information about firm fundamentals. For example, Goldstein and Guembel (2008) show

that this channel can lead to negative spillovers, Goldstein, Ozdenoren, and Yuan (2013)

show that it may distort investment decisions, and Brunnermeier and Oehmke (2014)

show that it may lead to situations where short sellers can force a vulnerable institution

to liquidate assets at fire-sale prices. In the same vein, Brunnermeier and Pedersen (2005)

and Carlin, Lobo, and Viswanathan (2007) develop predatory trading models where short

sellers exploit undercapitalized arbitrageurs.

In addition to DD and Beneish et al. (2015), our paper directly relates to the empirical

literature that investigates the effect of short selling frictions. See Reed (2013) for a survey

of this extensive body of work. Consistent with our arguments, Blocher and Whaley

(2015) show that ETF managers tend to tilt their portfolios toward stocks with higher

lending fees as a way of enhancing their returns, Prado (2015) suggests that institutional

investors buy shares in response to increases in lending fees, and Johnson and Weitzner

(2019) report that fund managers in their sample overweight assets with high lending

fees. Our paper is also consistent with D’Avolio (2002) who documents that shorting

costs are positively related to the dispersion of beliefs and with the findings of Nagel
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(2005), Blocher et al. (2013), and Prado, Saffi, and Sturgess (2016) regarding the effects

of supply and demand shocks in the securities lending market.

The remainder of the paper is organized as follows. The model is presented in Section

2. Section 3 provides a detailed account of the equilibrium construction. Section 4

discusses the endogenous determination of shorting costs and their properties in the

one- and two-risky assets cases. Section 5 presents our empirical exercise and Section 6

concludes. The proofs of all results are provided in Appendix A and an extension of our

benchmark model to the case of stochastic disagreement is found in Appendix B.

2 The model

2.1 Fundamental uncertainty

We consider a continuous-time economy on an infinite horizon. There is a single non

storable good available for consumption at every date t ≥ 0 and we assume that its

supply et evolves according to

det
et

= µdt+ σdZt,

for some exogenously given constants µ and σ > 0, where the process (Zt)t≥0 is a Brownian

motion under some reference probability.

2.2 Agents

The economy is populated by two agents that we index by a ∈ {o, p}. Agents observe

aggregate consumption as well as the prices of traded assets, but do not observe the

increments of the Brownian motion and disagree about their perception of the dynamics

of the aggregate consumption process. Specifically, we assume that from the point of

view of agent a, this process evolves according to

det
et

= µ(a)dt+ σdZ
(a)
t
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for some constant µ(a), where the process (Z
(a)
t )t≥0 is a Brownian motion under the

subjective probability of agent a. We denote by

∆ =
δ

σ
≡ µ(o) − µ(p)

σ

the disagreement per unit of volatility and assume that ∆ ≥ 0 so that agent o can be

interpreted as being an optimist and agent p as being a pessimist. The assumption of

a constant disagreement simplifies the solution of the model by fixing the identity of

the optimist and pessimist, and thereby limiting the number of state variables. Moving

to a richer model with a stochastic disagreement process leads to a more cumbersome,

yet fully explicit, characterization of the equilibrium but does not affect the underlying

economics, see Appendix B for such an extension.

Finally, we assume that conditional on their beliefs, the two agents have homogenous

logarithmic preferences given by

E
(a)
0

[∫ ∞
0

e−ρt log ctdt

]

for some constant discount rate ρ > 0, where E
(a)
t [·] denotes an expectation under the

agent’s subjective probability measure conditional on the observation of the paths of

dividends and market prices, up to date t ≥ 0.

As is well-known, this specification implies that agents have marginal propensity to

consume equal to ρ and choose their portfolio to optimize an instantaneous quadratic

criterion (see (8) below). In the context of our model, this myopic behavior also implies

that–up to a slight reinterpretation and the addition of a linear term in the drift of the

endogenous state variable–all the asset pricing results we derive below remain unchanged

if instead of two agents with constant beliefs we consider a steady state population of

agents subject to idiosyncratic shocks that shift their perceived growth rate back and

forth between a low and a high value.
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2.3 Traded assets

The financial market consists of three long-lived assets: A locally riskless asset in zero

net supply and two risky securities in positive supply of one unit each. The price of the

riskless asset evolves according to

dS0t = rtS0tdt

for some interest rate process rt that is to be determined in equilibrium. On the other

hand, we assume that risky asset i ∈ {1, 2} is a claim to a fraction ηi ≥ 0 of aggregate

consumption, and that its price evolves according to

dSit + ηietdt = rtSitdt+ Sitσit

(
dZ

(a)
t + θ

(a)
it dt

)
, (1)

where the volatility coefficient σit and the perceived market prices of risk

θ
(o)
it = ∆ + θ

(p)
it

are to be determined endogenously in equilibrium. To ensure that the market portfolio

Mt ≡ S1t + S2t is a claim to the whole aggregate consumption, we naturally assume that

the fractions paid by the risky assets are such that η1 + η2 = 1.

The risky assets in our model have proportional dividends and thus are Siamese twins

(see e.g., Froot and Dabora (1999) and De Jong et al. (2009)). This assumption serves

two purposes. First, it allows us to easily account for the fact that the shares of a given

stock are often not all available for lending because of a variety of reasons that include the

existence of different share classes (Mei et al. 2009), dual or cross-listings as in the case

of ADRs (Blau et al. 2012), or the occurence of an equity carve-out (Lamont and Thaler

2003). Second, and perhaps more importantly, this assumption allows us to study the

effect of costly short sales on ex-ante identical assets within a single general equilibrium

model where all markets clear rather than across different models.
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2.4 Shorting frictions

Our point of departure from existing equilibrium models with heterogenous beliefs is that

the risky assets are subject to different trading arrangements. Specifically, we assume that

shares of asset 2 cannot be shorted whereas shares of asset 1 can be shorted by incurring

a flow cost per dollar of short as long as the position is maintained.

To sell short, one must first borrow the required shares. In line with the evidence

reported by D’Avolio (2002), Baklanova et al. (2015), Gensler (2021), and Chen et al.

(2022) among others, we assume that the lending market is intermediated by a number

n ≤ ∞ of ex-ante identical lending agents and that securities are held for investors by

a custodian bank. At time t ≥ 0 an investor who wishes to short over the next instant

is randomly matched to one of the lending agents. Each lending agent i sets a shorting

fee Φit to maximize her flow of shorting revenues taking as given the aggregate short

demand schedule of the investors who are matched with her at time t ≥ 0. Once the

terms of the short transactions are set, each lending agent borrows the required shares

from the custodian bank, lends them over an infinitesimal time interval to the investors

matched with her, and transfers the induced shorting fees to the custodian bank who in

turn redistributes them on a value weighted basis to holders of long positions. See Figure

1 for an illustration of this mechanism in a model with a single intermediary.

We assume that a given investor can only be matched with a single lending agent

at each point in time. As a result, each lending agent enjoys some degree of market

power over the group of investors who are matched with her at a given point in time.

To simplify the presentation, we focus on the case where intermediaries are benevolent

and enjoy full bargaining power over investors in the determination of the shorting fee.

However, the model is easily extended to the case where intermediaries—and possibly also

the custodian bank—retain a fraction of lending fees and do not enjoy full bargaining

over investors. See Remark 1 below for a discussion of the latter extension.

The fact that shorting fees eventually accrue to investors who are long induces a form

of interaction between investors. For this interaction to remain competitive, investors

have to take as given not only the costs incurred when taking short positions but also

the fees that they may receive when they hold shares of asset 1. We model this feature
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Figure 1: The shorting mechanism. In this example with a single lending agent, the short

interest in asset 1 amounts to ν =
∑

i νi ≥ 0 shares while the aggregate long position sums up

to
∑

k nk = 1 + ν shares. As a result, the equilibrium lending yield is Γt = ν
1+νΦt.

by assuming that agents take as given the flow cost of shorting as well as the flow rate

of lending fees Γt that each dollar invested in asset 1 generates, and determine this rate

endogenously in equilibrium by requiring that the flow of lending fees received by long

agents equals the flow of costs paid by short agents. To make a clear distinction between

the flows paid by short agents and those received or anticipated by long agents, we refer

to Φit as the shorting cost charged by lending agent i and to Γt as the lending yield.

In our model, investors of type o are more optimistic than investors of type p and both

have logarithmic utility. Therefore, we know that investors of type p are short whenever

investors of type o are and, since all investors cannot be short simultaneously, it follows

that shorting activity can only come from the pessimists in equilibrium. Furthermore,

the assumption of logarithmic utility implies that the short demand schedule of any

investor is proportional to her wealth. Combining these observations shows that, up to a

multiplicative factor, all intermediaries face the same optimization problem in equilibrium

and it follows that they will all select the same shorting fee Φit ≡ Φt at every point in
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time. In particular, we may assume without loss of generality that the lending market is

intermediated by a single agent and thus set n ≡ 1 from now on.

2.5 Definition of equilibrium

Combining the above shorting mechanism with the usual self-financing condition shows

that the wealth of agent a evolves according to

dW
(a)
t =

(
rtW

(a)
t − ct + Λ (π1t; Φt,Γt)

)
dt+

∑
i

πitσit

(
dZ

(a)
t + θ

(a)
it dt

)
, (2)

where ct ≥ 0 represents her consumption rate, πt ∈ R×R+ denote the amounts she invests

in the risky assets, and the nonlinear term

Λ(m; Φt,Γt) ≡ m+Γt −m−Φt (3)

captures the flow rate of lending fees that she pays or receives.

As is standard, we require agents to maintain strictly positive wealth at all times.

Therefore, the optimization problem solved by agent a is

sup
(c,π)

E(a)

[∫ ∞
0

e−ρt log ctdt

]
subject to (2), (3), and W

(a)
t > 0.

Whenever they exist, we denote by (c
(a)
t (Φ,Γ), π

(a)
t (Φ,Γ)) the optimal consumption and

optimal portfolio of agent a, taking as given the traded asset prices and the pair of flow

rates (Φ,Γ) that characterize the short market.

Definition 1. An equilibrium is a price process (S0t, S1t, S2t), a shorting cost Φt, and a

lending yield Γt such that

Φt ∈ argmax
x

{∑
a

π
(a)
1t (x,Γ)−x

}
, (4)
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and all markets clear:

∑
a

c
(a)
t (Φ,Γ) = et, (Consumption),

∑
a

π
(a)
it (Φ,Γ) = Sit, (Risky asset i ∈ {1, 2}),

∑
a

Λ
(
π

(a)
1t (Φ,Γ); Φt,Γt

)
= 0, (Lending market), (5)

where the mapping Λ is defined in (3).

The above definition is similar to the classical definition of an equilibrium by Radner

(1972) but includes two additional conditions to accommodate the presence of costly

short sales in a dynamic general equilibrium setting.

The first condition (4) is an optimality condition that results from our modelling of

the security lending market and which requires that the shorting cost maximizes shorting

revenues taking as given market prices, the lending yield anticipated by agents, and their

short demand schedules (a, x) 7→ π
(a)
t (x,Γ)−. The second condition (5) requires that the

flow of fees received by holders of long positions must equal the flow of lending fees paid

by short agents. We treat this condition as a market clearing condition as it matches

the flows exchanged between agents, but one could equally view this requirement as a

rational expectations condition which ensures that the lending fees anticipated by agents

are indeed realized along the equilibrium path.

3 Equilibrium

In this section, we sequentially build an equilibrium for our economy with shorting costs.

To facilitate the analysis, we focus throughout on the characterization of an equilibrium

in which the asset volatilities are strictly positive at all times.

3.1 Individual optimality

The absence of arbitrage requires the net Sharpe ratios offered by the different assets to

be such that it is not possible to generate a locally riskless return by combining assets.
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In our model, this constraint can be intuitively expressed as

max
{
θ

(a)
2t , θ

(a)
1t + γt

}
≤ θ

(a)
1t + φt, (6)

where γt ≡ Γt/σ1t and φt ≡ Φt/σ1t denote the lending yield and the shorting cost per

unit of volatility. The interpretation of this inequality is clear: The left hand side is the

largest expected excess return that can be generated from the point of view of agent a by

going long in either of the risky assets, while the right hand side is the expected excess

return generated by going short in asset 1. In addition to this no-arbitrage requirement,

in equilibrium we must have that

θ
(a)
2t = θ

(a)
1t + γt, (7)

for otherwise one of the assets would dominate the other and markets would not clear.

This equality shows that, in our model, an agent wanting to go long is indifferent between

the risky assets once fees are taken into account and will lead to some indeterminacy in

the characterization of optimal portfolios: see Proposition 1 below. Importantly, given (7)

the no-arbitrage condition (6) boils down to γt ≤ φt which simply requires that borrowing

asset 1 to hold it does not generate riskless profits.

The assumption of logarithmic utility implies that, under the above conditions, the

optimal consumption rate of agent a is given by

c
(a)
t = ρW

(a)
t

and that the fractions of her wealth p
(a)
it = π

(a)
it /W

(a)
t that she optimally invests in the

risky assets solve the mean-variance problem

max
p∈R×R+

{
Λ (p1; Φt,Γt) +

∑
i

piσitθ
(a)
it −

1

2
(p1σ1t + p2σ2t)

2

}
. (8)

The following proposition derives the solution to this problem and summarizes the optimal

trading behavior of agents, taking as given market prices and the rates (Φ,Γ) that

characterize the short market.
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Proposition 1. Assume that condition (7) holds and let φt ≥ γt. Then the optimal

portfolio of agent a satisfies

p
(a)
1t (Φ,Γ)σ1t = 1{

θ
(a)
2t ≥0

}xt + 1{
θ
(a)
1t +φt≤0

} (θ(a)
1t + φt

)
, (9a)

p
(a)
2t (Φ,Γ)σ2t = 1{

θ
(a)
2t ≥0

} (θ(a)
2t − xt

)
, (9b)

where xt is an arbitrary process such that 0 ≤ xt ≤ θ
(a)
2t .

The optimal trading strategy in Proposition 1 admits an intuitive interpretation. If the

net Sharpe ratio θ
(a)
2t = γt + θ

(a)
1t that agent a associates with long positions in the risky

assets is positive, then agent a naturally goes long at the optimum but there is a degree

of freedom in the determination of her optimal portfolio because any p ∈ R2
+ that delivers

the efficient risk exposure

∑
i

piσit = argmax
x∈R

{
xθ

(a)
2t −

1

2
x2

}
= θ

(a)
2t

is optimal. On the other hand, if θ
(a)
2t ≤ 0 then the agent clearly does not want to go long

in either risky asset. Whether she goes short in asset 1 depends on the sign of the Sharpe

ratio −(θ
(a)
1t + φt) that she associates with a short position in asset 1. If this quantity is

positive, then she shorts asset 1 to achieve the efficient risk exposure

p1tσ1t = argmax
x∈R

{
x
(
θ

(a)
1t + φt

)
− 1

2
x2

}
= θ

(a)
1t + φt,

and otherwise she invests only in the riskless asset.

3.2 Equilibrium shorting cost

Proposition 1 and the discussion preceding it show that the total flow of lending fees

induced by a shorting cost process Φt is well-defined only if φt = Φt/σ1t ≥ γt in which

case it is explicitly given by

∑
a

π
(a)
t (Φ,Γ)−Φt =

∑
a

φt

(
θ

(a)
1t + φt

)−
W

(a)
t . (10)
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In our model, agent o is more optimistic than agent p and both have logarithmic utility.

Therefore, we know that agent p is short whenever agent o is short and, because agents

cannot be short simultaneously in equilibrium, it follows that any shorting activity must

come from the pessimist alone. In particular, we must have

θ
(o)
2t = θ

(o)
1t + γt > 0, (11)

so that the optimist is long at all times. In combination with (7), this implies that the

Sharpe ratios perceived by the optimist are such that

∀y ≥ γt :
(
θ

(o)
1t + y

)−
=
(
θ

(o)
2t − γt + y

)−
= 0.

As a result, the sum in (10) reduces to the contribution of the pessimist and it follows

that the equilibrium shorting cost satisfies

φt ∈ argmax
y≥γt

{
y
(
θ

(p)
1t + y

)−}
= max

{
γt,−

1

2
θ

(p)
1t

}
+ 1{

θ
(p)
1t ≥0

}R+. (12)

The above expression shows that when θ
(p)
1t ≥ 0, the shorting cost is undetermined because

in such states neither agent wants to go short irrespective of the cost set by the lending

agent. To facilitate the presentation, we from now select the smallest element of the

above set of maximizers, i.e., we let

φt = max

{
γt,−

1

2
θ

(p)
1t

}
. (13)

This selection is without loss of generality and simply amounts to setting the flow cost

to zero on the endogenous set of states L ≡ {(ω, t) : γt = 0}, where the shorting market

is inactive in equilibrium.

Substituting the optimal portfolios of Proposition 1 into the market clearing conditions

shows that the equilibrium lending yield and shorting cost are related by

γtσ1tS1t = (φt − γt)
(
θ

(p)
1t + φt

)−
W

(p)
t . (14)
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Since the diffusion of asset 1 and the wealth of the pessimist are both strictly positive in

equilibrium, this identity combined with (7) and (13) implies that (see the Appendix A

for a detailed argument)

L =
{

(ω, t) : θ
(p)
2t ≥ 0

}
, (15)

and substituting back into (13) shows that

φt = −1

2
θ

(p)
1t 1{S}, (16)

where

S ≡ (Ω× R+) \L =
{

(ω, t) : θ
(p)
2t < 0

}
(17)

denotes the set of states where the shorting market is active. These expressions provide

key information about the equilibrium properties of the shorting market. Specifically,

the equivalent set identities (15) and (17) show that the market is active in equilibrium

exactly in states where θ
(p)
2t = θ

(p)
1t + γt < 0 so that the pessimist perceives a strictly

negative net Sharpe ratio on long positions in either risky asset. Equation (16) shows

that, in those states, the lending agent sets the flow cost φt to one half of the Sharpe ratio

−θ(p)
1t that the pessimist could have obtained absent frictions. In response, the pessimist

scales down her short demand by a half relative to the frictionless case and, as a result,

the flow of lending fees received by the optimist, i.e.

(
π

(p)
1t

)−
Φt =

1

4

(
θ

(p)
1t

)2

W
(p)
t 1{S},

amounts to a fourth of her optimal frictionless excess return.

Remark 1 (Nash bargaining). Since the lending agent upholds only the interests of asset

owners, this fraction constitute an upper bound on the share that alternative price setting

mechanisms may attribute to the optimist. In particular, if the cost was determined by

Nash bargaining between the lending agent and the pessimist(s) then (16) would be

replaced by − b
2
θ

(p)
1t 1{S}, where b ∈ [0, 1] represents the bargaining power of the lending
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agent. In response, the pessimist would now scale down her optimal short demand by

a factor 1 − b
2

and, as a result, the optimist would capture a fraction b
2
(1 − b

2
) of her

optimal frictionless excess return. We focus throughout the paper on the polar case

where b = 1 because it leads to simpler algebraic expressions for equilibrium outcomes,

but the structure of the equilibrium and the qualitative properties of the model, including

the characterization of the trading regions, remain the same when b < 1.

3.3 State variables and trading regions

Combining the equilibrium restriction (7) with the expression of the equilibrium shorting

cost in (12) shows that the set

{
(ω, t) : θ

(p)
2t < 0 and θ

(p)
1t + φt ≥ 0

}
6= ∅. (18)

Therefore, it follows from Proposition 1 that the pessimist is strictly long in either or

both risky assets in the interior of the set L where θ
(p)
2t > 0, is fully invested in the riskless

asset on the boundary where

∂L ≡
{

(ω, t) : θ
(p)
2t = 0

}
,

and is strictly short in asset 1 on the set S where θ
(p)
2t < 0. As we now show, the scale

invariance of logarithmic preferences allows us to characterize these sets and the resulting

pricing of risk/time in terms of a single endogenous state variable

st ≡ c
(o)
t /et ∈ [0, 1]

that tracks the consumption share of the optimist. To construct the equilibrium evolution

of this state variable, we take as reference the subjective probability of the optimist. This

choice is without loss in generality.
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Since the marginal propensity to consume of both agents is ρ, it follows from market

clearing that the price of the market portfolio is

Mt =
∑
i

Sit =
∑
a

W
(a)
t =

1

ρ

∑
a

c
(a)
t =

et
ρ
,

and that the endogenous state variable can be expressed as

st =
W

(o)
t

Mt

= 1− W
(p)
t

Mt

. (19)

On the other hand, combining (7), (11), and (14) with the results of Proposition 1 shows

that the wealth of the agents evolve according to

dW
(o)
t

W
(o)
t

= (rt − ρ) dt+ θ
(o)
2t

(
dZ

(o)
t + θ

(o)
2t dt

)
,

and

dW
(p)
t

W
(p)
t

= (rt − ρ) dt+ 1{L}
(
θ

(o)
2t −∆

)(
dZ

(o)
t + θ

(o)
2t dt

)
+ 1{S}

(
θ

(o)
2t −∆− γt + φt

)(
dZ

(o)
t +

(
θ

(o)
2t − γt + φt

)
dt
)
,

subject to (16) and

γtσ1tS1t = 1{S}(1− st) (γt − φt)
(
θ

(o)
2t −∆− γt + φt

)
Mt. (20)

Next, applying Itô’s lemma to the second equality in (19) and matching terms, pins down

the equilibrium interest rate rt and the equilibrium market price of risk θ
(o)
2t as functions

of the state variable and the lending yield:

θ
(o)
2t = θ∗(st) − 1{S}

(1− st) (st∆− σ − γt)
1 + st

(21a)

and

rt = r∗(st) + 1{S}
st(1− st) (σ + γt + ∆) (st∆− σ − γt)

(1 + st)2
, (21b)

21



where

θ∗(st) ≡ σ + (1− st) ∆,

r∗(st) ≡ ρ− σ2 + µ(o)st + µ(p)(1− st),

denote the market price of risk and the interest rate that would prevail in an otherwise

identical economy where either or both of the risky assets can be freely shorted (see e.g.,

Detemple and Murthy (1997)).

On the shorting region, we have from (16) that φt = −1
2
θ

(p)
1t > γt and combining this

with (7) and (21a) shows that over that region

σ + γt < st∆.

Therefore, it follows from (21) that the presence of costly short selling increases the

interest rate and decreases the market price of risk relative to the frictionless case. To

understand this result, observe that costly short sales trigger a reduction in the short

demand of the pessimist which in turn implies that the optimist’s equilibrium portfolio

does not have to be as leveraged as in the frictionless case and, thus, explains the changes

in the interest rate and market price of risk.

Substituting (17) into (21a) shows that the net Sharpe ratio perceived by the pessimist

on long risky asset positions satisfies

θ
(p)
2t = 1{

θ
(p)
2t ≥0

} (σ − st∆) + 1{
θ
(p)
2t <0

}γt (1− st) + 2 (σ − st∆)

1 + st
. (22)

This implies that L of (15) is contained in the set of states where the consumption share

of the optimist lies below the threshold

s∗ = s∗(∆) ≡ min
{

1,
σ

∆

}
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Figure 2: Equilibrium trading regions. The figure illustrates the shape of the equilibrium

trading regions and allows us to determine the equilibrium configuration that occurs for each

level of disagreement among agents.

and, because the second term on the right hand side of (22) is nonnegative at st = s∗, we

conclude that the trading regions are explicitly given by

L =
{

(ω, t) : θ
(p)
2t ≥ 0

}
= {(ω, t) : 0 < st ≤ s∗} , (23a)

S = (Ω× R+) \L =
{

(ω, t) : θ
(p)
2t < 0

}
= {(ω, t) : s∗ < st < 1} . (23b)

These expressions show that shorting occurs only in states where the optimists represent

a large enough share of the economy. This is intuitive. Indeed, when optimists are very

few, prices mostly reflect the opinion of the pessimists and shorting is not necessary. On

the contrary, when a large fraction of agents are optimists, equilibrium prices reflect more

closely the opinion of the optimists and shorting becomes necessary for the pessimists to

express their perception of the risky assets as being overpriced.

As illustrated in Figure 2, the characterization of the trading regions in (23) shows that

two mutually exclusive types of equilibria may arise in our model. The first type occurs if
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the disagreement among agents is so small that ∆ ≤ σ. In that case, both agents are long

in the risky asset throughout the state space, and the existence of the shorting market

is irrelevant so that the equilibrium is the same as in an otherwise identical frictionless

economy with heterogenous beliefs (see Detemple and Murthy (1997)). The second type

of equilibrium occurs when the disagreement among agents is such that ∆ > σ. In that

case, the equilibrium includes two non empty trading regions: up to the locus of points

st = σ/∆, both agents are long and the shorting market is inactive, while strictly above

that locus agent 2 holds a short position in asset 1 and the shorting costs she incurs

generate a strictly positive flow of lending revenues for the optimist.

Applying Itô’s lemma to both sides of the first equality in (19) and matching terms

finally shows that the state variable evolves according to

dst
st(1− st)

= m (st, γt) dt+ v (st, γt) dZ
(o)
t ,

with the functions defined by

v (st, γt) = v (st, γt; ∆) ≡ ∆− 1{st>s∗(∆)}
st∆− (γt + σ)

1 + st
, (24a)

m (st, γt) = m (st, γ; ∆) ≡ (1− st) v (st, γt)
2 (24b)

+ 1{st>s∗(∆)}
(st∆− (γt + σ))((γt + ∆)st − σ)

(1 + st)2
.

Importantly, the drift and the diffusion of the endogenous state variable are equal to zero

at both st = 0 and st = 1. This implies that 0 and 1 are absorbing boundaries for the

consumption share process of the optimist, and will allow us to easily derive boundary

conditions for equilibrium prices in the next section.

3.4 Price representation

Having characterized the instantaneous pricing of risk and time, we now turn to the

pricing of long lived assets. To this end, let

ξ
(o)
t,u ≡

eρtc
(o)
t

eρuc
(o)
u

= e−ρ(u−t) stet
sueu
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denote the normalized marginal utility of the reference agent.

Proposition 2. In equilibrium

S1t = E
(o)
t

[∫ ∞
t

ξ
(o)
t,u (e1u + S1uΓu) du

]
, (25)

S2t = E
(o)
t

[∫ ∞
t

ξ
(o)
t,ue2udu

]
, (26)

where eit = ηiet denotes the dividend rate of asset i = {1, 2}.

The above proposition shows that there are no rational bubbles in our model. Indeed,

the equilibrium prices of the two assets are given by the risk-adjusted present value of the

cash flows that they deliver to holders of long positions. The novelty is that, in our model,

the cash flows of risky asset 1 include an endogenous component S1tΓt that accounts for

the lending fees generated by each share of the asset along the equilibrium path.

This endogenous cash flow component is strictly positive over a set of positive measure

if and only if the disagreement ∆ > σ so that the shorting region is non empty. In that

case, the equilibrium price-dividend ratio of asset 2

PD2t ≡
S2t

e2t

= E
(o)
t

[∫ ∞
t

e−ρ(u−t)
(
st
su

)
du

]

is strictly lower than that of asset 1

PD1t ≡
S1t

e1t

= E
(o)
t

[∫ ∞
t

e−ρ(u−t) st
su

(1 + PD1uΓu) du

]
,

and the premium

PD1t − PD2t = E
(o)
t

[∫ ∞
t

e−ρ(u−t) st
su

PD1uΓudu

]
=

1

η1

(
1

ρ
− PD2t

)
> 0 (27)

gives the risk-adjusted present value of the stream of holding benefits that accrue to

owners of asset 1 in the form of lending fees.

The above inequality implies that, in the presence of costly short sales, the equilibrium

pricing rule is nonlinear as the risky assets have different price-dividend ratios despite

the fact that they are Siamese twins. Specifically, since PD2t < 1/ρ from (27), we have
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that the share of asset 2 in the market portfolio

S2t

Mt

= ρη2PD2t < η2

is strictly lower than the share of aggregate dividends that it pays out, while the share

of asset 1 in the market portfolio

S1t

Mt

= ρη1PD1t = 1− ρη2PD2t > η1

exceeds its share of dividends. This nonlinearity is entirely driven by the presence

of costly short sales and provides a rational explanation for the apparent mispricing

observed in the period following certain corporate restructurings. For example, Lamont

and Thaler (2003) report that after the spin-off by 3Com of 5% of its subsidiary Palm,

the extrapolation of the value of the traded Palm shares resulted in an implied valuation

that exceeded the market capitalization of the subsidiary 3Com.

As suggested by Cherkes et al. (2013), the key to understand this phenomenon is

the observation that at the time of this apparent mispricing, the costs associated with

shorting Palm were very high because only the 5% of freely traded Palm shares could

be lent to investors wanting to establish a short position. In our model, the η1 = 5% of

freely traded Palm shares are akin to asset 1 so that their price in (25) should include

a sizable lending fee component in (27), while the remaining Palm shares held by 3Com

are part of asset 2 whose equilibrium price in (26) only reflects the present value of future

dividends. We quantitatively illustrate this feature of the model in Section 4.2.

Remark 2. The strict inequality (27) holds irrespective of whether the shorting market

is currently active or not. Indeed, we show in Appendix A that the equilibrium evolution

of st on the long region implies

P (o)

[{
sup
u≥t

su ∈ S
}∣∣∣∣ 0 < st ≤ s∗

]
= 1, (28)

so that the optimist can be certain that, starting from any point in L, her consumption

share will eventually enter the open region S where the trading of the pessimist generates

strictly positive lending fees.
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4 Equilibrium prices and lending yield

To complete the construction of the equilibrium, it now remains to compute the lending

yield and the risky asset prices. To facilitate the presentation, we start with the simpler

case of a single risky asset where the solution is in closed-form before turning to the more

challenging case of two risky assets. We then calibrate the model to briefly discuss the

3Com/Palm spin-off puzzle.

4.1 One risky asset

When the weight η1 = 1, the single risky asset S1t = Mt is the market portfolio and its

volatility equals that of the aggregate dividend. Substituting these quantities into (16)

and (20) and using (21) shows that in equilibrium

Φt = 1{st>s∗}
(δ + Γt)st − σ2

1 + st
, (29)

Γt = 1{st>s∗}
(1− st)(stδ − Γt − σ2)((δ + Γt)st − σ2)

σ2(1 + st)2
, (30)

where the constant

δ ≡ σ∆ = µ(o) − µ(p) ≥ 0

denotes the unscaled difference in beliefs between the two agents. Solving this system

delivers the following result.

Proposition 3. With a single risky asset, the equilibrium shorting cost and the equilib-

rium lending yield are given by

Φt = 1{st>s∗}
st(1− st)δ − 2σ2 +

√
s2
t (1− st)2δ2 + 4σ4st

2(1− st)
, (31)

and

Γt = 1{st>s∗}
−st((1− st)2δ + 4σ2) + (1 + st)

√
s2
t (1− st)2δ2 + 4σ4st

2st(1− st)
, (32)
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and both are increasing and convex in δ.

The positive relation between the shorting cost and the difference in beliefs is intuitive.

Indeed, an increase in δ implies that agent p becomes more pessimistic than agent o in

relative terms and thus triggers an upward shift in her short demand schedule which in

turn leads to an increase of the shorting cost. To understand the comparative statics of

the lending yield, note that due to market clearing we have

Γt =
ΦtΥt

1 + Υt

, (33)

where the utilization ratio Υt ≡ π
(p)
1t

−
/S1t tracks the fraction of shortable shares that are

on loan. This measure of short interest is affected by changes in δ both directly through

the perceived risk premia and indirectly through the equilibrium shorting cost. However,

combining Proposition 1 and (16) reveals that in equilibrium we have

Υt =

(
1− st
σ

)(
θ

(p)
1t + φt

)−
=

(
1− st
σ2

)
Φt, (34)

which implies that the comparative statics of Υt and thus of Γt are the same as those

of the equilibrium shorting cost Φt. In particular, since the shorting cost is increasing

in δ, this identity shows that, in equilibrium, there exists a positive relation between

short interest and the divergence in beliefs. This implication of the model is consistent

with extensive empirical evidence. In particular, it is well documented that there exists a

positive relation between short interest and the dispersion of analysts’ earning forecasts

taken as a proxy for heterogenous beliefs (see e.g., D’Avolio (2002), Duffie et al. (2002)),

and Table 1 below confirms that the same relation holds in the sample that we use for

our empirical application in Section 5.

To illustrate the magnitude of the shorting cost and its dependence on the wealth

distribution, Figure 3 plots Φt and Γt as function of the consumption share of the optimist

in a model with σ = 10% and δ = 5%. The figure shows that the shorting cost starts

from zero at the lower end of the shorting region, increases until it reaches a maximum
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Figure 3: Equilibrium shorting cost and lending yield. The solid and dash-dotted lines

represent the equilibrium shorting cost and lending yield as functions of the consumption share

of the optimist in a single asset model with σ = 0.1 and δ = 0.05. The dashed|dotted lines

represent the impact of a 10% increase|decrease in the divergence of beliefs δ.

and tappers off to a limit that is given by

lim
st→1

Φt = (1− s∗) δ
2

= (∆− σ)
σ

2

as a result of (31). To understand this limit, recall that as st → 1 the model converges

to one where only the optimist is present. As a result, the market price of risk perceived

by the pessimist must converge to its frictionless counterpart θ∗(1)−∆ = ∆(s∗ − 1) and

the expression for the limiting cost now follows from (16).

The bottom curves of the figure show that the lending yield is a bell-shaped function

of st that starts from zero at the lower end of the shorting region and comes back to zero

as the wealth share of the optimist approaches one. The apparent discrepancy between

the limiting behavior of the shorting cost and the lending yield as st → 1 can be traced

back to the economic nature of these objects. Indeed, Φt represents a price that can

be meaningfully understood in the limit as the cost for a short position of infinitesimal
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size (see e.g., Davis (1998), Hugonnier and Kramkov (2004), Hugonnier, Kramkov, and

Schachermayer (2005)) whereas Γt is a flow rate that can be strictly positive only in states

where the pessimist holds a non infinitesimal fraction of aggregate wealth.

As usual with logarithmic preferences, the price S1t = et/ρ of the single risky asset

is unaffected by the presence of frictions. However, it is important to recall that, in our

model, this price comprises two parts. Indeed, it follows from Proposition 2 that

S1t = E
(o)
t

[∫ ∞
t

ξ
(o)
u,teudu

]
+ E

(o)
t

[∫ ∞
t

ξ
(o)
u,tS1uΓudu

]
,

where the first term

E
(o)
t

[∫ ∞
t

ξ
(o)
u,teudu

]
= E

(o)
t

[∫ ∞
t

e−ρ(u−t)
(
st
su

)
du

]

gives the (risk-adjusted) present value of futures dividends, i.e., the fundamental value of

the asset, and the second captures the present value of the flows of lending fees associated

with ownership of the asset. As we discuss below in the two risky assets case, the fact

that the lending yield is a deterministic function of the endogenous state variable implies

that both components can be computed from the solution to a boundary value problem

for a nonlinear differential equation, see (36) and (37).

4.2 Two risky assets

Consider now the model with two risky assets. Equation (27) shows that in order to

compute the equilibrium asset prices it is sufficient to compute the price-dividend ratio

of asset 2 or, equivalently, its market share

wt ≡
S2t

Mt

= ρE
(o)
t

[∫ ∞
t

ξ
(o)
u,te2udu

]
= ρη2E

(o)
t

[∫ ∞
t

e−ρ(u−t)
(
st
su

)
du

]
.

This expression makes it clear that wt and thus the asset prices

(S1t, S2t) = (1− wt, wt)Mt
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depend on an expectation over the future path of the endogenous state variable. On the

other hand, since

σ1tS1t = ((1− wt)σ − difft(w))Mt, (35)

it follows from (24) that the drift and diffusion of st on the shorting region depend on wt

and its diffusion coefficient

difft(w) =
1

dt
d
〈
wt, Z

(o)
t

〉
through the lending market clearing condition (20). Therefore, the triple (st, wt, difft(w))

is the solution to a Forward Backward Stochastic Differential Equation over an infinite

horizon (FBSDE, see Ma and Yong (1999) for a thorough introduction).

Since the evolution of the process st is fully determined by (st, wt, difft(w)), it is

natural to look for Markovian equilibria in which wt = w(st) for some sufficiently regular

bounded function such that

w(0) = w(1) = η2, (36)

where the equalities follow from the fact that the endogenous state variable is absorbed

at the endpoints of the unit interval. Furthermore, Itô’s lemma and (35) show that for

such a solution we have

difft(w) = st (1− st) v (st, γt)w
′(st)

and therefore

σ1tS1t = ((1− w(st))σ − st (1− st) v (st, γt)w
′(st))Mt,
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where the function v(st, γt) is defined by (24a). Substituting into the short market clearing

condition (20), gives a quadratic equation

γtσ

1− st
=
γt (γt + ∆ + σ)w′(st)

(1− w(st)) (1 + st)
+

(st∆− γt − σ) ((γt + ∆)st − σ)

(1− w(st)) (1 + st)
2

that implicitly determines the lending fee

γt = γ (st, w(st), w
′(st))

as a function of st, w(st), and w′(st) for all st > s∗. Substituting this function into

(24) then shows that the endogenous state variable evolves according to the autonomous

stochastic differential equation defined by

dst = m[w](st)dt+ v[w](st)dZ
(o)
t ,

with the deterministic functions

(m[w](s), v[w](s)) ≡ s (1− s) (m, v) (s, γ (s, w(s), w′(s))) .

This implies that st is a Markov diffusion and, since the process

e−ρt
w(st)

st
+ ρη2

∫ t

0

e−ρu
du

su
= ρη2E

(o)
t

[∫ ∞
0

e−ρu
du

su

]

is by construction a martingale, it follows that the market weight is a piecewise twice

continuously differentiable solution to

ρ

(
w(s)

s

)
= m[w](s)

(
w(s)

s

)′
+

1

2
(v[w](s))2

(
w(s)

s

)′′
+
ρη2

s
, (37)

subject to the boundary condition (36).

This nonlinear boundary value problem is too complex to admit an explicit solution.

We therefore resort to numerical methods to illustrate the quantitative implications of the

model. As a first step, we start by observing that on the long region [0, s∗] the differential
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equation simplifies to

ρw(s) = ρη2 +
1

2
s2(1− s)2∆2w′′(s).

A direct calculation shows that, for any given ε ∈ (0, η2), the unique solution to this

equation with w(0) = η2 and w(s∗) = ε is explicitly given by

w(s; ε) = η2 + (ε− η2)
( s
s∗

) 1
2

+ 1
2

√
1+ 8ρ

∆2

(
1− s
1− s∗

) 1
2
− 1

2

√
1+ 8ρ

∆2

.

Relying on this solution over the long region, we now combine a traditional shooting

approach with a collocation method (see, e.g., Miranda and Fackler (2004) and Dangl and

Wirl (2004)) to construct a global solution as follows: For each value of ε we implement a

Chebyshev collocation to numerically solve equation (37) on the shorting interval [s∗, 1]

subject to the initial conditions

0 = w(s∗)− w(s∗; ε) = w′(s∗)− w′(s∗; ε),

and then numerically vary the value of the free constant until the solution satisfies the

terminal boundary condition w(1) = η2 required by (36).

To illustrate the quantitative implications of the model in the two asset case, we fix

the underlying parameters (σ, δ, ρ) = (10, 5, 1)% and set et = 1 so that the equilibrium

value of the market portfolio is normalized to 100. In the left panel of Figure 4, we plot

the equilibrium price of asset 1

S1t = Mt − S2t = (1− w(st))Mt

and the present value of its future dividends, i.e., its fundamental value,

f1(st)Mt ≡ E
(o)
t

[∫ ∞
t

ξ
(o)
u,te1udu

]
=
η1w(st)Mt

1− η1

when η1 = 50%, so that half of the asset supply is available for shorting. In a frictionless

environment, these functions would be constant and equal to η1Mt = 50 because, absent
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shorting costs, asset 1 only entitles its owner to a constant share of dividends. As shown

by the figure, this is no longer the case in the presence of a shorting friction. Indeed,

since s∗ = σ2/δ = 0.2 < 1, we have S 6= ∅ and it follows that asset 1 entitles its owners

to strictly more than its share of dividends. Since the value of the market is fixed, this

implies that the equilibrium price of asset 2, given by the risk-adjusted present value of

its dividends, must account for less than 1− η1 = 50% of the market, and it follows that

the price of asset 1 must strictly exceed its frictionless value η1Mt = 50, which in turn

must exceed the fundamental value of the asset.

The difference between the market value of the asset and the risk-adjusted present

value of its dividends, that is

`(st)Mt ≡ E
(o)
t

[∫ ∞
t

ξ
(o)
u,tS1uΓudu

]
=

(
1− w(st)

1− η1

)
Mt,

represents the risk-adjusted present value of the lending fees associated with ownership

of asset 1. The figure shows that this difference is bell-shaped as function of the state

variable and can amount to as much as 10% of the market portfolio when half of the

asset supply can be shorted. To illustrate the impact of the supply parameter η1 on the

lending component, we plot in the right panel the relative contribution

`(st)

1− w(st)
=

1− η1 − w(st)

(1− η1)(1− w(st))

of this component to the price of asset 1 for different values of η1 ranging from 1% to

100%. As shown by the figure, this contribution is also single-peaked as a function of the

state variable and monotone decreasing in η1. The latter property is intuitive. Indeed,

as η1 decreases, the dividend component of the asset cash flows naturally decreases but

the lending fees component remains essentially unchanged because the demand for short

positions is not directly affected by the supply parameter η1, and it follows that lending

fees must account for a larger share of the equilibrium asset price.

As discussed in Section 3.4, the nonlinearity of the equilibrium pricing rule can help

explain apparent mispricing episodes such as the partial spin-off of Palm by 3Com. To

illustrate this point, we identify asset 1 with the 5% of shortable Palm shares and asset 2
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Figure 4: Decomposition of the equilibrium price. The left panel plots the price of

the asset 1 (solid line) and the risk-adjusted present value of its dividends (dashed line) when

half of the supply is available for shorting. The right panel plots the present value of lending

fees as a fraction of the asset price for different values of η1. In both panels the parameters of

the model are set to σ = 10%, δ = 5%, ρ = 1%, et = 1, and the hatched region indicates the

interval over which no shorting activity takes place in equilibrium.

with the remaining shares held by 3Com. From the figure, we read that the equilibrium

price of the block of shortable Palm shares evaluated at the point s∗ is given by (1 −

w(s∗))Mt = 5.87 and includes 15.5% of lending fees. Extrapolating this price to the

remaining Palm shares values asset 2 at (0.95/0.05)(1−w(s∗))Mt = 111.41 which exceeds

the value Mt = 100 of the conglomerate and represents a premium of

(
0.95

0.05

)(
1− w(s∗)

w(s∗)

)
− 1 = 18.35%

relative to the equilibrium price w(s∗)Mt = 94.14 of asset 2. Note that these figures are

conservative because they are evaluated at the point s∗ that signals the entry into the

shorting region. If instead we used as reference the point argmax (1− w(s)) ≈ 0.62, then

the price of the block of shortable Palm shares would include 32% of lending fees and the

relative premium on asset 2 would increase to 46.84%.
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Figure 5: Equilibrium with two risky assets. This figure plots the PD ratio and the

volatility of the shortable asset (1st row), the shorting cost and the lending yield per unit of

volatility (2nd row), and the shorting cost and the lending yield (3rd row) as functions of the

consumption share of the optimist for different values of η1 in a model with σ = 10%, δ = 5%,

ρ = 1% and et = 1. In each panel the hatched region indicates the interval of states over which

no shorting activity takes place in equilibrium.
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Turning to the lending market, Figure 5 plots the price-dividend ratio of the shortable

asset PD1t and its volatility σ1t, as well as the shorting cost and lending fees both per unit

of volatility (φt, γt) and unscaled (Φt,Γt). The middle panels show that, when expressed

in units of risk, the shorting cost and the lending yield are decreasing in the dividend

share η1 and otherwise behave similarly as in the one asset case of Section 4.1 which here

corresponds to the dash-dotted lines. The former feature can be understood as follows:

As η1 decreases, asset 1 becomes more scarce so the share of total lending fees that each

share entitles to increases. This tends to push the price up and the market price of risk

down which in turn implies that the intermediary can charge a higher cost.

The bottom panels show that these intuitive properties no longer hold when the

shorting cost and the lending yield are expressed as flow rates per dollar of short. This

change can be traced back to the oscillatory behavior of the asset volatility in the top

right panel, which in turn is implied by the behavior of the PD ratio in the top left

panel of the figure. Indeed, since the PD ratio is hump-shaped and the diffusion of the

endogenous state variable st(1 − st)v[w](st) ≥ 0 vanishes at the endpoints of the state

space, we have that the excess volatility

σ1t − σ =
st(1− st)v[w](st)(−w′(st))

1− w(st)

is positive (negative) over the interval where the PD ratio (1−w(st))/(η1ρ) is increasing

(decreasing) and equal to zero at st = 0, st = 1, and at the point where the PD ratio

reaches its maximum. The top right and bottom panels of the figure show that the

amplitude of the volatility oscillation is decreasing in the dividend share η1 and gets

gradually transferred to the shorting costs and the lending yield as the shortable asset

becomes scarce.
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5 Empirical application

It follows from (1), (5), and (7) that, in equilibrium, the expected excess returns on the

two risky assets can be expressed as

1

dt
E

(o)
t

[
dSit + ηietdt

Sit

]
− rt = σitθ

(o)
2t − 1{i=1}Γt

= σitθ
(o)
2t − 1{i=1}

(
Υt

1 + Υt

)
Φt, (38)

where Φt is the shorting cost, Γt is the lending yield, and Υt is the fraction of the

available inventory that is on loan. This shows that, within our simple framework, the

two assets offer the same risk-return tradeoff once the lending revenues of asset 1 are

taken into account, and the same logic suggests that in a more general model including

multiple assets and sources of risk, risky securities with different shorting costs should

offer equivalent risk-adjusted investment opportunities provided that the lending revenues

that they generate are correctly controlled for.

This observation prompts us to revisit some of the findings of DD who document

that stocks with higher shorting costs exhibit significantly lower returns that cannot be

explained by standard risk factors and argue that these negative returns are a compensa-

tion for the systematic risk borne by the small fraction of investors who account for most

of the shorting activity. If upheld in the data, the above prediction of our model would

provide an alternative explanation: The returns of stocks with different shorting costs in

DD and Beneish et al. (2015) only appear to be different because the lending revenues

that they generate are not properly accounted for. In particular, the adjusted returns

of a CME portfolio that is long in cheap-to-short stocks and short in expensive-to-short

stocks should be explained by traditional factor models such as the three factors model

of Fama and French (1993) and the four factors model of Carhart (1997).

To test these predictions we assume that the beliefs of the optimist coincide with

those of the econometrician and construct a sample spanning the decade 2004–14 in

which the monthly stock returns of U.S. equities from CRSP are matched with accounting

information from Compustat, analyst forecasts from IBES, and the time series of shorting

costs and utilization rates provided by Markit Securities Finance at the individual stock
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level. Following DD, we then sort stocks into deciles at the end of each month based on

their volume-weighted shorting cost over the previous 30 days. Each decile contains, on

average, 270 stocks. The summary statistics of Table 1 confirm that the characteristics

of our sample are very similar to those of the sample used in DD, Table 2. Specifically,

shorting costs are low for most stocks and their distribution is highly skewed, with the

average varying between 0.56bps/month and 4.98bps/month for deciles 1 through 9 and

jumping to 57.79bps/month in decile 10. Measures of volatility and realized returns also

closely track the characteristics of the sample used by DD. One exception is decile 10 for

which the average excess return is positive in our sample and negative in DD, although

we note that median returns for decile 10 are negative.

Consistent with previous studies, our sample also displays a negative relation between

shorting costs and firm size (Saffi and Sigurdsson 2011), a positive relation between

shorting costs and the dispersion of analyst forecasts (D’Avolio 2002), and a positive

relation between shorting costs and the portfolio level utilization rate

Util
[n]
t =

1

270

270∑
i=1

Utilit

that gives the average over each decile of the stock level utilization rates Utilit computed

by MSF as the ratio of the value of shares on loan to the total value of lendable shares

(Beneish et al. 2015). Table 1 also reports the lending yield of each decile portfolio defined

as the average

Yield
[n]
t ≡

1

270

270∑
i=1

Yieldit =
1

270

270∑
i=1

(
Utilit

1 + Utilit

)
Costit (39)

of the lending yields of the stocks in the portfolio computed from the shorting costs and

the utilization rate as in the right hand side of (38). This variable is essentially aligned

with the shorting cost but of much lower magnitude since our model assumes that lending

revenues are shared by all owners on a value-weighted basis.
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Table 1: Summary statistics for decile portfolios. This table reports mean (median)

quantities associated with ten portfolios of stocks sorted on their shorting cost. The data set

covers the period from January 2004 to January 2014 and is filtered to exclude stocks with a

price below $5 per share. The resulting sample contains on average 270 stocks per decile.

Decile n Cost
[n]
t Yield

[n]
t Util

[n]
t Vol

[n]
t Disp

[n]
t MCap

[n]
t r

[n]
t − rt

(bps/month) (bps/month) (%) (%/month) (%) ($billion) (%/month)

1 (Cheap) 0.56 0.05 9.05 2.18 8.86 13.20 0.82

0.52 0.02 4.82 1.80 2.53 3.59 0.63

2 0.78 0.09 12.96 2.31 9.59 5.87 1.02

0.73 0.06 8.72 1.92 2.77 1.88 0.86

3 0.88 0.11 14.4 2.43 10.50 3.32 1.11

0.82 0.07 10.41 2.04 2.97 1.17 0.91

4 0.94 0.11 14.42 2.53 12.67 2.28 1.07

0.86 0.08 10.41 2.12 3.33 0.79 0.88

5 1.00 0.11 13.34 2.64 14.64 1.80 1.03

0.88 0.07 9.02 2.21 3.68 0.52 0.61

6 1.07 0.12 12.81 2.73 16.24 1.87 1.05

0.96 0.07 7.88 2.3 4.00 0.36 0.59

7 1.26 0.16 14.85 2.79 18.79 2.53 1.37

1.20 0.09 8.71 2.31 4.24 0.33 0.65

8 1.94 0.32 20.86 2.91 21.34 3.11 1.32

1.54 0.20 14.91 2.37 4.55 0.40 0.52

9 4.98 1.05 27.55 3.16 22.87 3.71 1.17

3.57 0.56 22.82 2.58 5.26 0.30 0.29

10 (Expensive) 57.79 21.78 50.49 3.98 31.11 1.63 0.41

26.69 8.09 56.67 3.26 7.14 0.21 -0.45

Cost
[n]
t : MSF reports the value-weighted average shorting cost for each security over the past 1, 3, 7,

and 30 days where the weight assigned to a loan fee is the dollar value of the outstanding balance of the
loan divided by the total dollar value of outstanding balances for that time period. Like DD we analyze
trading strategies that are rebalanced monthly and therefore use the 30-day value-weighted average fee as
our measure of a stock’s shorting cost and then average across stocks within each decile. If an observation
is missing the 30-day value-weighted average fee, we simply drop it from the sample.

Yield
[n]
t : The monthly lending yield of decile n computed according to (39) using the shorting costs and

utilization rates of the stocks in each portfolio.

Util
[n]
t : Utilization rate computed by MSF as the ratio of the value of assets on loan (from Beneficial

Owners) to the total value of lendable assets and then averaged within each decile. MSF sources this
data from several custodians and prime brokers. See Beneish et al. (2015) and Ramachandran and Tayal
(2021) for a detailed description of the MSF data set.

Vol
[n]
t : Monthly volatility of the portfolio excess return measured as the sum of squared daily returns

over a month as in (French et al. 1987, Schwert 1989).

Disp
[n]
t : Dispersion of analysts’ earnings-per-share forecast scaled by the absolute value of the average

outstanding forecast as in (Diether et al. 2002).

r
[n]
t − rt: Monthly excess returns on decile-n computed using equal weights and the time series of the

risk free rate rt provided in the data library of Kenneth French.
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We then use the time series of monthly returns of the ten decile portfolios to estimate

an empirical asset pricing model of the form

r
[n]
t − rt = α[n] +

K∑
k=1

β
[n]
k fkt + ε

[n]
t ,

where ft ∈ RK is a vector of risk factors and ε
[n]
t is an error term. Following DD

and most of the empirical literature, we take as benchmarks the three-factor model of

Fama and French (1993) with ft = (mktt, smbt, hmlt) and its four-factor extension by

Carhart (1997) that also includes the momentum factor. The alphas estimated from

these benchmark specifications along with their statistical significance are reported in

the benchmark columns of Table 2. Consistent with Beneish et al. (2015) and DD, the

results of this benchmark exhibit a strong shorting premium relative to either factor

model. In particular, the unadjusted returns of the CME portfolio generate a strongly

significant unexplained excess return of 64bps/month relative to the three-factor model

and of 56bps/month relative to the four-factor model, and as in DD, these results become

even more pronounced if we only use the most expensive-to-short half of decile 10 in the

construction of the CME portfolio.

To show that this shorting premium can be explained within our framework, we

estimate the adjusted factor models defined by

r
[n]
t − rt + Yield

[n]
t = α[n] +

K∑
k=1

β
[n]

k fkt + ε
[n]
t ,

where ft ∈ RK is the same vector of observable risk factors as before, εnt is an error

term, and the adjustment on the left hand side represents the average lending yield of

the stocks in decile n computed according to (39). As can be seen from the adjusted

columns of Table 2, the adjustment has little impact on the returns of deciles 1 to 9

in which shorting costs are minute. However, there is a sizable effect from adding the

lending yield to returns of decile 10 as the estimated alpha jumps up from −49bps to

−27bps/month relative to the three-factor model and from −37bps to −15bps/month

relative to the four-factor model. What is perhaps more revealing is that the estimated

alpha becomes statistically insignificant relative to both factor models.
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Table 2: Estimated alphas for decile and CME portfolios. The CME portfolios are

constructed by going long in the stocks of decile 1 and short in the stocks of either decile 10

or decile 10b which corresponds to the more expensive-to-short half of decile 10. The adjusted

returns of the CME portfolios are defined by (40) whereas the adjusted returns of the portfolio

labeled 10 (Short) correspond to the net returns on a short position in decile 10. The t-statistics

are computed using Newey-West standard errors with 12 lags and the superscripts ∗, ∗∗, and

∗∗∗ indicate statistical significance at the 10%, 5% and 1% levels.

Factor model Decile n α[n] (%) |t-stat.| α[n] (%) |t-stat.|

Benchmark Adjusted

Fama and French (1993) 1 (Cheap) 0.16∗∗∗ (1.55) 0.16∗∗∗ (1.56)

2 0.29∗∗∗ (3.65) 0.29∗∗∗ (3.66)

3 0.35∗∗∗ (5.04) 0.35∗∗∗ (5.05)

4 0.28∗∗∗ (3.43) 0.28∗∗∗ (3.44)

5 0.23∗∗∗ (1.47) 0.23∗∗∗ (1.48)

6 0.25∗∗∗ (2.06) 0.25∗∗∗ (2.07)

7 0.59∗∗∗ (2.92) 0.59∗∗∗ (2.93)

8 0.52∗∗∗ (1.98) 0.52∗∗∗ (1.99)

9 0.38∗∗∗ (1.38) 0.39∗∗∗ (1.42)

10 (Expensive) −0.49∗∗∗ (1.88) −0.27∗∗∗ (1.05)

10 (Short) 0.49∗∗∗ (1.88) −0.09∗∗∗ (0.35)

CME [1–10] 0.64∗∗∗ (3.03) 0.06∗∗∗ (0.29)

[1–10b] 1.24∗∗∗ (4.29) 0.22∗∗∗ (0.78)

Benchmark Adjusted

Carhart (1997) 1 (Cheap) 0.19∗∗∗ (2.60) 0.19∗∗∗ (2.61)

2 0.31∗∗∗ (3.70) 0.32∗∗∗ (3.71)

3 0.37∗∗∗ (6.42) 0.37∗∗∗ (6.43)

4 0.31∗∗∗ (4.47) 0.31∗∗∗ (4.48)

5 0.27∗∗∗ (2.19) 0.27∗∗∗ (2.20)

6 0.28∗∗∗ (2.53) 0.28∗∗∗ (2.54)

7 0.65∗∗∗ (4.53) 0.65∗∗∗ (4.54)

8 0.60∗∗∗ (3.61) 0.60∗∗∗ (3.63)

9 0.45∗∗∗ (2.24) 0.46∗∗∗ (2.30)

10 (Expensive) −0.37∗∗∗ (2.10) −0.15∗∗∗ (0.88)

10 (Short) 0.37∗∗∗ (2.10) −0.21∗∗∗ (1.29)

CME [1–10] 0.56∗∗∗ (3.01) −0.03∗∗∗ (0.14)

[1–10b] 1.17∗∗∗ (4.48) 0.15∗∗∗ (0.59)
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To remain consistent with the model, we cannot simply compute the adjusted returns

on the CME portfolios by subtracting the adjusted return of decile 10 from that of decile 1,

as this would impose a counterfactual identity between the shorting cost and the lending

yield of decile 10. Instead, we define the adjusted CME returns as

CME
[1−m]
t ≡

(
r

[1]
t + Yield

[1]
t

)
+
(
−r[m]

t − Cost
[m]
t

)
, (40)

where the first term is the adjusted return on a long position in decile 1 and the second

is the net return on a short position in decile m ∈ {10, 10b}. As can be seen from the

highlighted cells of Table 2, the results of the corresponding adjusted regressions strongly

support the predictions of our model. Indeed, the estimated alphas for the long/short

portfolio, which were positive and strongly significant in the benchmark case, are now

very close to zero and statistically insignificant for both CME portfolios.

The impact of the shorting friction that our model captures is readily observed in

the row labeled 10 (Short) which reports estimation results for the net returns of a short

position in decile 10. The entry in the benchmark column displays the exact opposite

to the entry for decile 10, whereas the entry in the adjusted column accounts for the

shorting costs. As our results demonstrate, this operation not only changes the sign of

the estimated alpha but also its statistical significance.

6 Conclusion

We study a dynamic general equilibrium model with costly short sales and heterogeneous

beliefs. The closed-form solution to the model reveals how costly short sales drive a

wedge between the valuation of assets that promise identical cash flows but are subject

to different trading arrangements. In our model, the price of an asset is given by the

risk-adjusted present value of the cash flows it promises but these cash flows include

both dividends and an endogenous lending yield. This pricing formula implies that, after

adjusting for lending revenues, asset returns satisfy a standard intertemporal capital asset

pricing model and allows us to shed light on recent findings about the explanatory power

of shorting costs in the cross-section of stock returns. In particular, we show empirically
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that once returns are appropriately adjusted for lending fees, stocks with low and high

shorting costs offer equivalent risk-return tradeoffs.
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A Proofs

Proof of Proposition 1. The solution follows from a direct application of the Karush, Kuhn,

and Tucker conditions to (8) subject to (6) and (7). �

Proof of Proposition 2. Let ξt = ξ
(o)
t with

−dξt
ξt

= rtdt+ θ
(o)
2t dZ

(o)
t

denote the marginal utility of the optimist. By construction, we have that

Nit = ξtSit +

∫ t

0
ξu
(
eiu + 1{i=1}S1uΓu

)
du

are local martingales under P (o) and it follows from Lemma 1 below that these processes are

martingales over any finite horizon. In particular, we have that

ξ
(o)
t Sit = E

(o)
t

[
ξTSiT +

∫ T

t
ξu
(
eiu + 1{i=1}ΓuS1u

)
du

]
for all finite T <∞ and therefore

ξ
(o)
t Sit = lim

T→∞
E

(o)
t [ξTSiT ] + E

(o)
t

[∫ ∞
t

ξu
(
eiu + 1{i=1}ΓuS1u

)
du

]
by monotone convergence, since the terms below the integral are all nonnegative. To complete

the proof, it remains to show that the limit is zero. Let λt = 1/st − 1. As shown in the proof

of Lemma 1 below, we have that

ξTSiT ≤ ξTMT = e−ρTM0

(
s0

sT

)
= e−ρTM0

(
1 + λT
1 + λ0

)
≤ e−ρTM0

(
1 + ΛT
1 + λ0

)
for some P (o)−martingale with initial value λ0 and therefore

lim
T→∞

E
(o)
t [ξTSiT ] ≤ lim

T→∞

e−ρTM0

1 + λ0

(
1 + E

(o)
t [ΛT ]

)
= lim

T→∞
e−ρTM0 = 0,

where the last equality uses the fact that ρ > 0. Since ξTSiT ≥ 0, this in turn implies that the

limit is zero and the proof is complete. �

Lemma 1. The process Nit is a P (o)−martingale on [0, T ] for any T <∞.

Proof. By construction, we have that

0 ≤ Nit ≤ Nt ≡ N1t +N2t = ξtMt +

∫ t

0
ξu (eu + S1uΓu) du,
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and it is thus sufficient to show that the process Pt is a martingale under P (o) over the finite

time interval [0, T ]. Since Sitσit ≥ 0 we have that

Sitσit ≤
2∑
j=1

Sjtσjt = Mtσ.

On the other hand, using (30) and the fact that γt ≤ φt shows that we have

γt ≤ φt = 1{st>s∗}
st∆− (γt + σ)

1 + st
≤ ∆.

Combining this inequality with the definition of ξt, we deduce that there are strictly positive

constants such that

|Nt| ≤ ξtMt +

∫ t

0
ξuMu (ρ+ γuσ) du

≤ ξtMt +

∫ t

0
ξuMu (ρ+ ∆σ) du ≤ C + C ′ sup

u∈[0,T ]
λu (41)

for all t ∈ [0, T ], where λt ≡ 1/st − 1. Using Itô’s lemma and the dynamics of the consumption

share process in (24) shows that

dλt = λt

(
g(st, γt)dZ

(o)
t − f(st, γt)dt

)
for some functions f, g : [0, 1] × [0, φ] → R such that f(s, γ) ≥ 0 and |g(s, γ)| ≤ ∆. Therefore,

Novikov’s condition implies that

Λt ≡ e
∫ t
0 f(su,γu)duλt = λ0 exp

(
−
∫ t

0
g(su, γu)dZ(o)

u −
1

2

∫ t

0
|g(su, γu)|2du

)
is a P (o)−martingale on any finite time interval and it thus follows from Doob’s maximal

inequality that for any q > 1 we have:

E(o)

[
sup

u∈[0,T ]
λqu

]
≤ E(o)

[
sup

u∈[0,T ]
Λqu

]
≤ q

q − q
E(o)

[
ΛqT
]
.

Now, since |g(s, γ)| ≤ ∆ and the function xq is convex for any q > 1, it follows from the mean

comparison results of Hajek (1985, e.g., Theorem 1.3) that

E(o)
[
ΛqT
]
≤ Λq0E

(o)
[
eq∆Z

(o)
T −

1
2
q∆2T

]
= e

1
2
q(q−1)∆2Tλq0.

This implies that the right hand side of (41) is P (o)−integrable and the required result finally

follows from the dominated convergence theorem. �
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Proof of equation (15). If θ
(p)
2t ≥ 0 then it follows from γt ≤ φt and (7) that we have

θ
(p)
1t + φt ≥ θ(p)

1t + γt = θ
(p)
2t ≥ 0,

and therefore γt = 0 due to (14). To establish the converse implication, assume towards a

contradiction that we have the lending yield γt = 0 but θ
(p)
2t < 0. Then it follows from (7), (13)

and (14) that we have

0 = φt

(
θ

(p)
1t + φt

)−
W

(p)
t =

1

4

{
θ

(p)
2t

−}2

W
(p)
t

and therefore θ
(p)
2t ≥ 0, since the wealth of the pessimist is strictly positive. �

Proof of equation (18). If θ
(p)
2t < 0 then

θ
(p)
1t + φt = θ

(p)
1t + max

{
γt,−1

2θ
(p)
1t

}
= max

{
θ

(p)
1t + γt,

1
2θ

(p)
1t

}
= max

{
θ

(p)
2t ,

1
2

(
θ

(p)
2t − γt

)}
< 0,

where the first equality follows from (13) and the third follows from (7). �

Proof of Proposition 3. For st > s∗ we have that (30) is equivalent to gt(γ) = 0 with the

quadratic function defined by

gt(γ) ≡ (1− st)(st∆− γ − σ)((γ + ∆)st − σ)− γσ(1 + st)
2.

Since

gt(0) = (1− st) (st∆− σ)2 > 0,

g′t(0) = −σ(1 + st)
2 − (1− st)2(st∆− σ) < 0,

g′′t (γ) = −st(1− st) < 0,

and

lim
γ→∞

gt(γ) = −∞,

it is clear that (30) admits a unique strictly positive solution. A direct calculation shows that

this solution is given by (32) and substituting into (29) gives (31). The comparative statics

follow by (31), (33), and (34) by differentiation. We omit the details. �

Proof of equation (28). First observe that

P
(o)
t

[{
sup
u≥t

su ∈ S
}]

= P
(o)
t [{τ∗ <∞}] ,
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where the stopping time

τ∗ ≡ inf{u ≥ t : st ≥ s∗}

denotes the first time at or after t ≥ 0 that the Itô process st finds itself in the shorting region.

To obtain the required probability, we will compute

gt ≡ E(o)
t

[
e−λτ

∗
]

= E
(o)
t

[
e−λτ

∗
1{τ∗<∞}

]
,

and then let λ ↓ 0. On the time interval [t, τ∗], we have from (24) that the consumption share

of the optimist evolves according to the autonomous SDE

dst = st(1− st)∆
(
dZ

(o)
t + (1− st)∆dt

)
.

Therefore, it follows from well-known results (see, e.g., Karatzas and Shreve (1988, Chapter

5.7.A)) that gt = g(st), where the function g : [0, 1] → R is the unique bounded function such

that

λg(s) = s(1− s)2∆2

(
g′(s) +

1

2
sg′′(s)

)
, 0 ≤ s ≤ s∗,

g(s) = 1, s∗ ≤ s ≤ 1.

Solving this differential equation gives

g(st) = 1{st>s∗} + 1{st≤s∗}

{
s∗

st

(
1− st
1− s∗

)} 1
2
− 1

2

√
1+ 8λ

∆2

,

and the desired result now follows from the dominated convergence theorem by letting the

constant λ ↓ 0 in the definition of gt. �

B Stochastic disagreement

In this appendix, we discuss the construction of an equilibrium in an extension of the model

where the divergence in beliefs is stochastic and time-varying.

Assume that the economy is populated by two agents indexed by a ∈ {1, 2} who have

different perceptions of the evolution of the aggregate dividend process. Specifically, assume

that in the eyes of agent a

det
et

= µ
(a)
t dt+ σdZ

(a)
t ,
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for some agent-specific Brownian motions Z(a) and growth rate process µ
(a)
t such that the scaled

divergence in beliefs

∆t ≡
1

σ

(
µ

(1)
t − µ

(2)
t

)
is adapted to the filtration generated by the observation of the aggregate dividend process. As

a typical example, one could consider an Ornstein-Uhlenbeck process for the disagreement, i.e.,

a process of the form

d∆t = −λ∆tdt+ dZ
(o)
t = −(1 + λ)∆tdt+ dZ

(p)
t ,

for some strictly positive constant λ, but the exact specification of the divergence process is

unimportant for the arguments of this appendix. All the other building blocks of the model,

i.e., the agents’ preferences, the assets they trade, and the shorting mechanism remain the same

as in the benchmark model of Section 2.

If the disagreement never changes sign then this model is essentially equivalent to the

benchmark model of Section 2 with the identification [o, p] = [1, 2] if the disagreement is always

positive and [o, p] = [2, 1] in the opposite case. Now assume that the disagreement is not signed.

In this case, the identity of the optimist is a stochastic process that changes back and forth

between ot = 1 when the disagreement is positive and ot = 2 when it is negative. As a result,

the equilibrium can be constructed by analogy with that of the benchmark model by observing

that the consumption share of agent 1 evolves like the consumption share of the optimist in

the benchmark model at times where the disagreement is nonnegative, and as the consumption

share of the pessimist at times where it is negative. For brevity we only outline the main steps.

Let st ∈ [0, 1] denote the consumption share of agent 1 which we will use as an endogenous

state variable. Proceeding along the lines of Sections 3.2 and 3.3 shows that the equilibrium

shorting cost and lending yield satisfy

−φt = 1{S(1)}
1

2
θ

(1)
1t + 1{S(2)}

1

2
θ

(2)
1t (42)

and

γtσ1t (1− wt) = (φt − γt)φt
(

1{S(1)}st + 1{S(2)}(1− st)
)
, (43)

where

S(2) =
{

(ω, t) : θ
(2)
2t < 0 ≤ θ(1)

2t

}
=
{

(ω, t) : st > s∗
(
∆+
t

)}
gives the region of the state space over which agent 2 is short in asset 1 and agent 1 holds long

positions in both risky assets, and

S(1) =
{

(ω, t) : θ
(1)
2t < 0 ≤ θ(2)

2t

}
=
{

(ω, t) : 1− st > s∗
(
∆−t
)}
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gives the region over which agent 1 is short in asset 1 and agent 2 holds long positions in both

risky assets. This, in turn, implies that the shorting market is endogenously inactive over the

region given by

L ≡ (Ω× R+)\ ∪a S(a) =
{

(ω, t) : min
a
θ

(a)
2t ≥ 0

}
=
{

(ω, t) : 1− s∗
(
∆−t
)
≤ st ≤ s∗

(
∆+
t

)}
and substituting these expressions into (21) and (24) shows that the equilibrium interest rate,

the equilibrium market price of risk perceived by agent 1, and the equilibrium evolution of her

consumption share are explicitly given by

θ
(1)
2t = θ∗(st)− 1{st>s∗(∆+

t )}
(1− st)

(
st∆

+
t − σ − γt

)
1 + st

− 1{1−st>s∗(∆−
t )}

st
(
(1− st) ∆−t − σ − γt

)
2− st

,

rt = r∗(st) + 1{st>s∗(∆+
t )}

st (1− st)
(
∆+
t + σ + γt

)
(st∆

+ − σ − γt)
(1 + st)2

+ 1{1−st>s∗(∆−
t )}

st (1− st)
(
∆−t + σ + γt

) (
(1− st)∆−t − σ − γt

)
(2− st)2

,

and

dst
st(1− st)

= m
(
st, γt; ∆+

t

)
dt+ v

(
st, γt; ∆+

t

)
dZ

(1)
t (44)

−m
(
1− st, γt; ∆−t

)
dt− v

(
1− st, γt; ∆−t

)
dZ

(1)
t ,

where the functions m(s, γ; ∆) and v(s, γ; ∆) are defined as in (24a) and (24b). See Figure 6

for an illustration of the equilibrium trading regions.

To complete the construction of the equilibrium, it now remains to solve for the equilibrium

lending yield γt and to compute the asset prices. In the one asset case, the derivation follows

the same steps as in Section 4.1. In particular, we find that the equilibrium shorting cost and

lending yield are given by

(Φt,Γt) = (Φ,Γ)
(
st,∆

+
t

)
+ (Φ,Γ)

(
1− st,∆−t

)
,

with the functions Φ(s,∆) and Γ(s,∆) implicitly defined by the right hand sides of (31) and

(32). The comparative statics are very similar to those of the benchmark model with a constant

disagreement. In particular, the flow rates (Γt,Φt) and the equilibrium utilization ratio

Υt =
1− st
σ2

Φ
(
st,∆

+
t

)
+
st
σ2

Φ
(
1− st,∆−t

)
are all convex and u-shaped in the disagreement ∆t.
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Figure 6: Trading regions with a stochastic disagreement. The figure illustrates the

shape of the equilibrium trading regions and allows us to determine the configuration that

occurs for each level of disagreement among agents.

The representation of equilibrium prices—or of the fundamental value in the one asset

case—is slightly more complex than in the benchmark model because each agent successively

participates on both sides of the shorting market. Proposition 1 and the above characterization

of the equilibrium trading regions imply that the normalized marginal utility of agent 1 evolves

according to

−dξ(1)
t /ξ

(1)
t = rtdt+

(
θ

(1)
1t + 1{S(2)}γt + 1{S(1)}φt

)
dZ

(1)
t .

Under appropriate integrability assumptions on the disagreement process ∆t, this expression

can be combined with arguments similar to those of the proof of Proposition 2 to show that the

equilibrium prices satisfy

S2t = E
(1)
t

[∫ ∞
t

ξ
(1)
t,ue2udu

]
,

and

S1t = E
(1)
t

[∫ ∞
t

ξ
(1)
t,u

(
e1u + 1{su>s∗(∆+

u )}S1uΓu + 1{1−su>s∗(∆−
u )}S1uΦu

)
du

]
. (45)
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To understand this expression, note that from the point of view of agent 1 the cash flows that

are relevant to the equilibrium valuation of asset 1 depend on which side of the shorting market

the agent is. On the set L, the only relevant cash flow is the dividend e1t since the shorting

market is inactive. On the set S(2), the agent is long in asset 1 so that the relevant cash flows

are the dividend and the lending yield S1tΓt associated with each share of the asset, and finally

on S(1), the agent is short so that the relevant cash flows are now given by the dividend and

the shorting cost S1tΦt required to maintain a short position. Importantly, if the disagreement

process is always positive then the latter region is empty and we recover (17).

To derive a differential equation for the equilibrium price of asset 1, we assume that the

scaled disagreement follows an autonomous diffusion process

d∆t = µ(∆t)dt+ Σ(∆t)dZ
(1)
t ,

with values in some set D ⊂ R and then proceed as in Section 4.2 albeit with an additional

state variable. Specifically, we look for an equilibrium in which

S1t = w (st,∆t)Mt

for some sufficiently regular function w : [0, 1]×D → [0, 1] such that

w(0,∆) = w(1,∆) = η1, ∀∆ ∈ D. (46)

Itô’s lemma and (35) show that, in such a Markovian equilibrium, the diffusion coefficient of

asset 1 satisfies

difft(S1)

Mt
= σw (st,∆) + w′∆(st,∆t)Σ(∆t)

+ w′s(st,∆t)
(
v(st, γt,∆

+
t )− v(1− st, γt,∆−t )

)
.

Substituting into (42) and (43) then gives a linear-quadratic system that implicitly determines

the shorting cost and the lending fee as functions

(Φ[w](st,∆t),Γ[w](st,∆t))

of st, ∆t, w(st,∆t), and the derivatives (w′s, w
′
∆)(st,∆t). Taking these functions as given, it

follows from (44) that the endogenous state variable evolves according to

dst = m[w](st,∆t)dt+ v[w](st,∆t)dZ
(1)
t
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for some explicit drift and diffusion functions (m, v)[w](s,∆). This, in turn, implies that the

pair (st,∆t) forms a Markov process and, since

e−ρt
w(st,∆t)

st
+

∫ t

0
e−ρu

(
ρη1 + 1{su>s∗(∆+

u )}w(su,∆u)Γ[w](su,∆u)

+ 1{1−su>s∗(∆−
u )}w(su,∆u)Φ[w](su,∆u)

)du
su

is a martingale as a result of (45), we deduce that the function u ≡ w/s is a piecewise twice

continuously differentiable solution to

(ρ− β[w](s,∆))u =
ρη1

s
+ µ(∆)u′∆ +

1

2
Σ(∆)2u′′∆∆

+m[w](s,∆)u′s + v[w](s,∆)Σ(∆)u′′s∆ +
1

2
v[w](s,∆)2u′′s∆,

subject to the boundary condition (46), where

β[w](s,∆) ≡ 1{s>s∗(∆+)}Γ[w](s,∆) + 1{1−s>s∗(∆−)}Φ[w](s,∆)

denotes the additional cash flow per dollar of asset value in (45) as a function of the state

variables s, ∆ taking as given w(·) and w′(·).
A numerical solution to this nonlinear boundary value problem can in principle be con-

structed using the same collocation approach as in the constant disagreement case of Section

4.2, albeit in two dimensions and subject to the caveat that the differential equation no longer

admits an explicit solution on the long region in general. We leave the challenges of this

implementation for future research.
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