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Abstract

Should credit scoring algorithms be public? I study this question in
a workhorse model of financial contracting with moral hazard, where the
lender uses borrower-shared data to predict the borrower’s cost of effort. I
show that revealing the allocation rule makes it vulnerable to gaming in the
form of strategic withholding of unfavorable information: unraveling forces
are absent as both bad and good borrowers withhold data, respectively to
escape rationing and to get better pricing (i.e. agency rents). The extent of
gaming is more pronounced when the allocation rule relies strongly on data.
When data sensitivity is high opacity alleviates gaming, allowing for credit
rationing and leading to more price discrimination. When data sensitivity is
lower opacity reduces disclosure because of the borrower’s hedging behavior
against rationing. Ultimately, the lender’s transparency choices depend on
the predictive power of data, are aimed at maximizing data-sharing, and are
in general socially inefficient.
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1 Introduction

Motivation. Recent advances in digital technology have transformed the way

firms store, transmit, process, and analyze information. Notably, a growing num-

ber of financial institutions have embraced automated machine learning (ML) al-

gorithms for the task of credit scoring and underwriting1, leveraging vast datasets

that encompass both traditional financial metrics and alternative data sources2.

The black-box nature of these algorithms has sparked significant public concern,

even with accusations of discriminatory practices based on race and gender, and

led individuals to adjust their online and offline behaviors in attempts to evade

such systems3. On the other hand, financial institutions claim that making the

algorithms’ inner working public would undermine their predictive ability, po-

tentially enabling individuals to game the system through strategic information

sharing4. Ultimately, algorithm transparency impacts borrowers’ willingness to

share data - a crucial asset in a market plagued by asymmetric information and

agency problems - and has a first-order impact on the allocative efficiency of

the credit market. What are the implications of algorithmic opacity and trans-

parency on borrowers’ data-sharing behavior? How do these factors affect the

allocative efficiency of credit markets, what are their distributional effect, and

their impact on social welfare? Despite their significance, these questions have

received limited attention in academic research. However, regulators are increas-

ingly addressing this issue, favoring transparency and citing principles of truth,

fairness, and equity over market efficiency5.

1A prominent example is FinTech’s ”3-1-0 model”: three minutes to apply, one second to
approve, and zero human intervention. Traditional banks, such as J.P. Morgan and Bank of
America, have also started to employ automated algorithms (see, e.g., Christine Idzelis, ”Bank
of America Adopts AI, Finds More Significant Credit Stresses From Covid-19”, September 11,
2020), and similarly have done credit scoring systems, such as FICO and Vantage Score.

2Alternative sources of data include, but are not limited to, gig economy income, utility bill
payments, childcare payments, social media data, digital footprints, web searches, mobile phone
usage patterns, e-commerce transactions, payment information, and data from IoT devices, and
so on.

3Sebastian Siemiatkowski, chief executive of the Swedish online payments company Klarna
AB, once said: ”Facebook is only as valuable as the information a consumer is willing to share
and whether that consumer is willing to connect the financial service to their Facebook data”.
(See Evelyn M. Rusli, ”Bad Credit? Start Tweeting”, Wall Street Journal, April 1,2013.))

4See, e.g., Suzanne Woolley, “How More Americans Are Getting a Perfect Credit Score”,
Bloomberg, August 14, 2017.

5See, e.g., the Fair Credit Reporting Act and the Equal Credit Opportunity Act put in place
by the Federal Trade Commission, and the Digital Services Act, Digital Markets Act and the
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Overview of the Model. This paper studies the optimal level of transparency

of credit risk algorithms in light of the amount of information that strategic bor-

rowers are willing to disclose. I consider a monopolistic lender and a continuum

of borrowers in need of cash to finance a project subject to moral hazard. The

lender chooses to provide credit or not and assigns an output-contingent payment

to the borrower. The borrowers are heterogeneous in their cost of providing effort

and possess hard evidence that can be used to predict it. As mandated by Open

Banking and GDPR, data is the borrower’s private information unless voluntar-

ily disclosed to the lender. The lender has access to an unbiased estimate of the

precision of data and can tailor an algorithm to it, i.e. a mapping from data

to allocations. Within this framework, I examine the borrower’s voluntary data-

sharing decision in two scenarios: when the parameters governing the algorithm

are the lender’s private information (referred to as opacity) and when they are

publicly known (referred to as transparency).

Preview of the Results. The optimal allocation rule, depends on data as

follows. The incentive payment to the borrower is increasing in the data real-

izations and high data realizations are credit rationed. Intuitively, higher data

realizations are informative of the borrower having a high cost of effort and thus

needing more skin in the game to make the project succeed. However, too high

data realizations indicate a low pledgeable income and a negative NPV for the

lender, which optimally chooses to deny credit. Moreover, the allocation rule

depends on the lender’s estimate of the precision of data (which is the lender’s

private information under opacity). In particular, the higher the precision of

data the steeper the payment schedule and the lower the rationing threshold.

Intuitively, when data is more precise the incentive scheme and the credit denial

decision depend more strongly on it.

I then study the borrower’s data-sharing decision when the algorithm is trans-

parent. Contrary to the common wisdom from the literature, I show that trans-

parency makes the allocation rule vulnerable to gaming in the form of strategic

withholding of unfavorable information, at the point that credit rationing never

happens in equilibrium. This may seem surprising in light of the classic unrav-

Artificial Intelligence Act set up by the European Commission.
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eling argument of Grossman (1981) and Milgrom (1981), which loosely states

that all available information is transmitted in equilibrium to avoid the lender’s

averse equilibrium inference following no disclosure. The equilibrium withhold-

ing of information in my setting is driven by the very nature of financial data,

i.e. data that can be jointly used for rationing and pricing purposes. Rationed

borrowers benefit from being pooled with good borrowers as this allows them to

access financing. Good borrowers benefit from being pooled with bad borrowers

as this allows them to get better prices, that is higher incentive payments. Hence,

the lender’s equilibrium inference following no disclosure is not so averse, and the

unraveling argument does not apply. Only average borrowers below the rationing

threshold have incentives to separate from the no-disclosure pool. The extent of

gaming - i.e. no disclosure - increases when data is more precise. When data

is more precise the rationing threshold is lower and more borrowers are willing

to withhold data to escape rationing. This also increases the good borrowers’

incentives to pool with bad ones and get better terms.

I then study data-sharing to an opaque algorithm, showing that opacity can lead

to both an increase or decrease in the equilibrium amount of information shared

compared to a transparent algorithm. In the data-sharing equilibrium under

opacity, very good and very bad borrowers still opt to withhold data. Notably,

bad borrowers face algorithmic uncertainty when sharing data: the unknown ra-

tioning threshold means they may receive either a very high payment or be credit

rationed. Conversely, withholding data emerges as a secure strategy: it ensures

that a borrower receives credit, albeit with lower expected payments. Conse-

quently, the optimal disclosure strategy for bad borrowers balances the potential

benefits of data-sharing against the hedge of withholding. It follows that the

amount of information shared in equilibrium can be either higher under opaque

or transparent algorithms depending on the precision of data, which determines

the rationing threshold and the set of non-disclosed data points under trans-

parency.

Finally, I conduct a welfare comparison highlighting the trade-offs of algorithmic

opacity from the lender’s point of view. I show that the lender’s transparency

choices are directed to minimize the information loss resulting from either gam-

ing or hedging. The benefits of one regime over the other stem from an increased

ability to personalize agency rents, a better average quality of the no-disclosure
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pool, and efficient credit rationing. In the end, the model predicts that the most

data-sensitive algorithms are kept opaque when transparency choices are dele-

gated to lenders.

I then study the transparency regime that maximizes a number of welfare mea-

sures. Transparency maximizes financial inclusion since credit rationing is only

possible under opacity. For the same reason, transparency maximizes the project’s

net present value (NPV), since every borrower possesses a positive NPV project

net of the agency rent. Lastly, I study the transparency regime that maximizes

(utilitarian) social welfare, intended as the sum of the lender’s and the borrower’s

profits, and show that the lender’s transparency choices are socially inefficient

since a social planner aims at limiting the amount of data shared in equilibrium.

Structure of the Paper. The remainder of the paper proceeds as follows.

In Section 2, I discuss the related literature. Section 3 describes the model.

In Section 4, I derive the optimal allocation rule. Sections 5.1 and 5.2 present

respectively the data sharing-equilibrium under transparent and opaque rules.

Section 6 is dedicated to the welfare comparison of transparency regimes. All

the proofs are relegated to the Appendix.

2 Related Literature

Strategic Classification. The paper is related to the literature in economics,

computer science, and machine learning studying the manipulation of scoring

systems (see Hardt, Megiddo, Papadimitriou and Wootters (2016) for a classic

paper in machine learning). In economics, the literature has been ignited by

Frankel and Kartik (2019) that studied the manipulation of a linear scoring rule

and showed that as incentives to manipulate increase less information is extracted

in equilibrium. Frankel and Kartik (2021) and Ball (2022) take a design perspec-

tive and study the optimal linear scoring rule. They show that the optimal rule

underutilizes data in order to limit the agent’s gaming behaviour. Perez-Richet

and Skreta (2022) analyze similar frictions when the scoring rule is a Blackwell

statistical experiment and an agent can falsify the state of the world. Similarly to

the above papers, they show that the informativeness of the experiment should

be reduced in order to offset strategic manipulation. A finance application is the
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paper by Cohn, Rajan and Strobl (2023) in the context of credit ratings.

My paper differs from these papers in at least three respects. First, they con-

sider types of data that can be distorted by agents at some cost. I consider data

as hard information that can be shared or held, but not misreported. Second,

I specifically focus on financial data used jointly for pricing and rationing pur-

poses. Third, they focus on transparent scoring rules whether I also consider

opaque ones and show that opacity can emerge as an alternative strategy to data

under-utilization.

Opacity. Some papers have studied the role of opacity in softening strate-

gic agents’ gaming behavior in different economic settings. Ederer, Holden and

Meyer (2018) study opaque incentive schemes in a principal-agent relationship

with multitasking. They show that hiding how the different tasks are rewarded,

induces a risk-averse agent to balance effort across tasks. Leitner and Williams

(2023) consider opacity in stress testing and show that it can prevent banks from

gaming the test but induces them to underinvest in socially desirable assets.

Wang, Huang, Jasin and Vir Singh (2023) and Sun (2021) study opacity of algo-

rithmic decision-making in, respectively, hiring and lending, finding contrasting

results.

The paper closest to mine is Sun (2021). He studies optimal algorithmic trans-

parency in a competitive lending market where lenders use an opaque predictive

algorithm to mitigate adverse selection and borrowers can modify a binary fea-

ture at some cost. My paper is different in several aspects. First, his model does

not have an interest rate and lenders make a binary choice about credit provi-

sion. I allow for data-driven pricing in a model of financial contracting. Second,

his lending market is competitive which prevents him from studying the lender’s

optimal transparency regime and making welfare comparisons. Third, he con-

siders costly manipulation of features whether I consider voluntary data-sharing,

consistent with current Open Banking regulation. Fourth, I model algorithmic

opacity as uncertainty about the mapping from input data to outcomes, whether

he considers borrowers’ uncertainty about their project’s payoff distributions. My

approach seems more in line with reality. Fifth, in his framework, transparency

leads to the worst possible outcome for the credit market, whether I highlight

possible benefits of transparency, in line with the current debate.
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Volontary Disclosure. The paper is related to the large literature on voluntary

information disclosure. The classical ”unravelling argument” pushed forward by

Grossman (1981) and Milgrom (1981) shows that, in equilibrium, a privately in-

formed sender will disclose all the available information to avoid the receiver’s

averse equilibrium inference. The subsequent literature tried to explain the com-

monly observed lack of disclosure by introducing disclosure costs (Verrecchia

(1983)), uncertainty about the evidence available to the sender (Dye (1985)),

information processing costs (Fishman and Hagerty (2003)), receiver’s outside

information (Harbaugh and To (2020) and Quigley and Walther (2022)) and un-

certainty about audience’s preferences (Bond and Zeng (2022)).

My paper adds to this literature in two ways. First, I show that when the sender

discloses financial information the unraveling argument has no bite. Thus, my

paper adds another reason why some information may be withheld in equilib-

rium. Second, I study information disclosure when the sender does not know

how the receiver processes information.

FinTechs. This paper is linked to the literature on digital disruption in banking

(see Vives (2019) for a literature review), and in particular to papers studying the

effects of new statistical technologies in the credit market. Alternative forms of

data6 have been shown to outperform traditional ones in predicting loan defaults

(see Bazarbash (2019), Berg, Burg, Gombović and Puri (2020) and Iyer, Khwaja,

Luttmer and Shue (2016)), and thus can play an important role in expanding ac-

cess to credit to individuals without a credit history (see Agarwal, Alok, Ghosh

and Gupta (2019) and Gambacorta, Huang, Li, Qiu and Chen (2020)). The novel

machine learning techniques used by FinTechs to process these data have been

shown to have perverse distributional effects due to their flexibility in capturing

structural relationships among variables such as race, income, and gender (see

Fuster, Goldsmith-Pinkham, Ramadorai and Walther (2022)).

The opacity of these algorithms has raised the concern that individuals may hedge

against them by modifying or even hiding their behavior online, with severe con-

6Alternative forms of data are any data that is not directly related to a consumer’s credit
behavior. Examples of alternative data include, but are not limited to, gig economy income,
utility bill payments, childcare payments, social media posts, digital footprints, web searches,
and payments data.
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sequences for their predictive ability and financial inclusion. I contributed to

this literature by identifying the welfare effects of borrowers’ hedging behavior

against algorithmic opacity.

Economics of Data and Privacy. This work belongs to a vast and grow-

ing literature on data, privacy, and their implications for markets (see Acquisti,

Taylor, and Wagman (2016) and Bergemann and Bonatti (2019) for surveys).

Part of this literature analyzes the welfare impact of data regulations such as

the GDPR and Open Banking. Ali, Lewis and Vasserman (2023) study price

discrimination when consumers have control over their data, finding that GDPR

can improve consumer surplus in both monopolistic and competitive markets.

He, Huang and Zhou (2023) consider lending market competition when borrow-

ers share data voluntarily and find that Open Banking makes borrowers worse

off. My work complements these studies by analyzing the welfare implications of

voluntary data sharing in financial contracting, a context where data has welfare

effects beyond mere surplus sharing à la Bergemann, Brooks, and Morris (2015)7

(see also Jansen, Nagel, Yannelis and Zhang (2023) for empirical evidence). A

point also made by Liang and Madsen (2024) in the context of the labor market.

3 Model

Economy. The economy is composed of a monopolistic lender and a continuum

of penniless borrowers in need of cash to finance a project. Both players are

risk-neutral and the borrowers are protected by limited liability. The borrower’s

project requires a unit of cash and generates a return X with probability e ∈ [0, 1]

and generates nothing otherwise. The probability of success e is chosen by the

borrower at a private cost c(e) = θe+ 1
2αe

2, and his choice is neither observable

nor contractible. Moreover, borrowers are heterogeneous with respect to their

cost of effort, which we assume to be uniformly distributed, θ ∼ U [0, 1]. In other

words, the project is subject to moral hazard in the spirit of Holmstrom and

Tirole (1997): the borrowers need monetary incentives to manage the project

7Bergemann, Brooks, and Morris (2015) study the welfare consequences of a monopolist
having additional data for price discrimination. They show that the granularity of data can
achieve every combination of consumer and producer surplus such that the total surplus does
not exceed the surplus generated by and efficient trade.
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diligently8. We make the following assumptions:

Assumption 1 (Cross-Subsidization). X −
√
4α ∈

(
1
2 , 1
)
.

Assumption 2 (Interior Effort). α > 1
2

(
3 +

√
5
)
.

Assumption 1 bounds the NPV of the project and has two implications. First,

there is scope for credit rationing: a perfectly informed lender would not provide

credit to inefficient borrowers. Second, market conditions allow the lender to

operate profitably: an uninformed lender finds it optimal to provide credit.

Assumption 2 assures that, under Assumption 1, borrowers’ effort choices are

interior solutions.

Data. We assume that the borrower’s cost of effort θ is unknown to both players

at the time of contracting9, and that the borrower possesses data s ∈ [0, 1]

that can be used to predict it. The data realization s is the borrower’s private

information unless disclosed to the lender. Specifically, the borrower chooses a

message m(s) ∈ {s,∅}, where m(s) = s means sharing data with the lender,

while m(s) = ∅ means withholding data.

The data-generating process (DGP) is truth-or-noise (see Lewis and Sappington

(1994)) and such that:

s =

 θ with pr. λ

ε with pr. 1− λ,
(1)

where ε ∼ U [0, 1] and is independent of θ. The value of λ determines the pre-

dictive ability of data: when λ = 1 the data realization s perfectly predicts θ,

while when λ = 0 data is completely useless. Importantly, we assume that the

8Alternatively, one can think that borrowers, in the absence of proper incentives, may delib-
erately reduce the probability of success in order to enjoy a private benefit.

9This assumption excludes the possibility of screening by the lender. An older literature has
considered how contractual terms, in particular collateral requirements, can be used to extract
the borrower’s private information (see, e.g., Bester (1985), Freixas and Laffont (1990) and
Besanko and Thakor (1987). A more recent literature has identified the role of data - coupled
with new statistical technologies - as a substitute to collateral in solving agency problems and
expanding access to finance (see Agarwal, Alok, Ghosh and Gupta (2019) and Gambacorta,
Huang, Li, Qiu and Chen (2020)). Because the focus of the paper is on the second topic, we
abstract away from the possibility of designing screening contracts.
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data-generating process in (1) is a priori unknown and such that λ is uniformly

distributed and sufficiently high, λ ∼ U [λ, 1]. However, the lender, having access

to statistical technology and a training dataset, can obtain an unbiased estimate

λ̂ = λ of the parameters governing the DGP. Since, knowing λ̂ is equivalent to

knowing λ, in what follows we will denote both the precision of data and its

estimate as λ. We define a lower bound for the precision of data.

Assumption 3 (Informative Data). λ = 2
(
X −

√
4α− 1

2

)
.

Assumption 3 implies that data will always be used for rationing purposes. This

assumption is not necessary for the main results of the paper but excludes full

disclosure equilibria that would arise when λ ∈ [0, λ] and are well understood by

the literature.

Algorithm. Given the knowledge of λ and some information set I, the lender

decides whether to provide credit to the borrower or not. We denoted the lender’s

decision to provide or deny credit as ℓλ(I) ∈ {0, 1}, where ℓλ(I) = 1 denotes

credit provision. If the lender provides credit, she also offers a payment to the

borrower xλ(I) ∈ [0, X] in case the project generates a return. The residual

return, or pledgeable income, X − xλ(I) is left to the lender. If the project

generates nothing, both the borrower and the lender get nothing10. We refer to(
ℓλ(I), xλ(I)

)
≜ aλ(I) interchangeably as an algorithm or an allocation rule, as

this map inputs data to allocations. At the optimum, the algorithm will depend

on the lender’s estimate of λ, so one can think directly at λ as a parameter

governing the algorithm. We define transparency and opacity as follows.

Definition 1 (Transparency and Opacity). The lender’s algorithm aλ(s) is:

• Transparent, if λ is public information,

• Opaque, if λ is the lender’s private information.

Timing. The timing of the game is as follows:

10Restricting attention to contracts that pay only in case the project success is without loss,
since paying nothing when the project fails is optimal for the lender.
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t = 0. The borrower’s type θ, the predictive power of data λ, and data s realize.

Data s is observed by the borrower and an unbiased estimate of λ is ob-

served by the lender (resp. everyone) under opacity (resp. transparency).

t = 1. The borrower shares or withholds data, choosing a message m ∈ {s,∅}.

t = 2. The lender allocates credit according to the algorithm aλ(s) =
(
ℓλ(m), xλ(m)

)
m∈{s,∅}.

t = 3. If the borrower gets credit, he observes his type θ, he exerts effort e, and

the project’s returns are realized.

4 Optimal Algorithm

This section describes the optimal allocation rule in the situation where the lender

possesses the borrower’s data, i.e. I = s. Let fλ(θ|s) be the lender’s posterior be-
liefs about the borrower’s cost of effort. The lender’s optimal algorithm allocates

credit to solve:

max
x∈[0,X]
ℓ∈{0,1}

ℓ

∫ 1

0

(
e(θ)(X − x)− 1

)
fλ(θ|s) dθ

s.t. e(θ) = argmax
e∈[0,1]

ex−
(
θe+

1

2
αe2
)
.

(2)

The optimal allocation rule maximizes the NPV of the lender’s investment, know-

ing that the project’s probability of success will be determined by the borrowers’

heterogeneous effort choices. Thus, the lender takes expectations over the NPV

given the data point s and her knowledge of the data-generating process λ. The

optimal allocation rule is described in the following Lemma.

Lemma 1 (Optimal Algorithm). The lender’s optimal algorithm is:

ℓλ(s) = 1{s< r(λ)} where r(λ) = 1/2 +
1

λ

(
X −

√
4α− 1/2

)
,

xλ(s) =
X + Eλ(θ|s)

2
where Eλ(θ|s) = λs+ (1− λ)1/2.

(3)

The θ-borrower’s utility with data realization s is:

V B
λ (s, θ) =

1

2α
ℓλ(s)

(
xλ(s)− θ

)2
. (4)

10



Proof. See the Appendix. ■

The optimal allocation rule is rather intuitive. First, the incentive payment

is increasing in the data realization since higher data realizations are informative

about the borrower having a high cost of effort and needing greater incentives.

The steepness of the repayment schedule xλ(s) is increasing in λ, the more infor-

mative is data the more the incentive scheme depends on it. Second, the lender

denies credit if the data realization is above a threshold r(λ). This happens

because for very high data realizations the expected cost of effort, and the result-

ing incentive payment, are so high that the lender would make a negative NPV

investment by providing credit. The rationing threshold is decreasing in data

informativeness λ: as λ increases lower and lower data realizations are included

in the rationing region. All in all, the higher is the predictive power of data the

more the lender’s allocation rule relies on it for both rationing and pricing.

5 Voluntary Data-Sharing

In the spirit of Open Banking initiatives, we now consider the case where borrow-

ers can voluntarily share data with the lender, where the latter draws inferences

based on both the data being shared and the borrower’s disclosure choices. We

consider in turn transparent and opaque allocation rules.

5.1 Transparent Algorithms

In this section, we show that transparent allocation rules are subject to gaming

by borrowers in the form of strategic withholding of unfavorable information.

When the scoring rule is transparent, the data-sharing equilibrium is described

in the following proposition.

Proposition 1 (Equilibrium under Transparency). With transparent algorithms,

there exists an equilibrium where the borrower’s data-sharing strategy is:

m(s) =

 ∅ if s ∈ [0, l(λ)] ∪ [r(λ), 1] ≜ G(λ)

s if s ∈
(
l(λ), r(λ)

)
,

(5)

where r(λ) is defined (3) and l(λ) = −
(
1− r(λ)

)
+
√
2
(
1− r(λ)

)
.
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The lender allocates credit according to Lemma 1 to all borrowers that share data,

while she allocates credit to all borrowers withholding data according to:

ℓλ(∅) = 1 ∀λ,

xλ(∅) =
X + Eλ(θ|∅)

2
.

(6)

Proof. See the Appendix. ■

Interestingly, some information is withheld in equilibrium. This may seem

puzzling in light of the classic unraveling argument that predicts that, in equi-

librium, a sender discloses all the available information. Briefly, the unraveling

argument states that borrowers with the most advantageous information will

surely disclose it, leading the lender to infer from the absence of disclosure that

borrowers lack this information. Consequently, borrowers with the next most

advantageous information also disclose, creating a cascade effect.

To grasp intuition about the partial disclosure equilibrium in Proposition 1, con-

sider first the lender’s inference following no-disclosure:

Eλ(θ|∅) = λ

(
ω(λ)

l(λ)

2
+ (1− ω(λ))

1 + r(λ)

2

)
+ (1− λ)

1

2
, (7)

where ω(λ) = l(λ)
l(λ)+1−r(λ) . The expected cost of effort is proportional to the

weighted average of the expected data realizations in the two disjoint sets that

compose the no-disclosure pool. Hence, the lender’s equilibrium inference fol-

lowing no disclosure is not so averse because borrowers withhold both good and

bad evidence. As a consequence, the lender is willing to provide credit following

no disclosure. This happens because, by Assumption 1, the overall market con-

ditions are favorable, and good borrowers cross-subsidize bad ones allowing the

lender to break even.

Second, consider the θ-borrower’s utility from data disclosure, following Lemma

1 this is11:

11Note that the actual value that the borrower gets from disclosure is E(V B(s, θ)|s), as θ is
unknown at the time of the data-sharing decision. Considering the utility in (8) isolates the
forces that lead to no disclosure from learning effects.
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V B(s, θ) =


1
2α

(
xλ(s)− θ

)2
if s ∈ [0, r(λ))

0 if s ∈ [r(λ), 1].

(8)

The utility is non-monotonic in s. It is increasing below the rationing thresh-

old r(λ) as higher data realizations get higher incentive payments, it then drops

to 0 for data points for which the lender rations credit. This implies that rationed

borrowers benefit from being pooled with borrowers with very good evidence as

this allows them to get credit. Similarly, borrowers with good evidence benefit

from pooling with rationed borrowers as this allows them to get higher incentive

payments than what they would get by disclosing data. Jointly, these two forces

sustain data withholding in equilibrium. Hence, my model points out that the

absence of disclosure can emerge as an equilibrium phenomenon even in markets

without disclosure frictions12 where the information being disclosed is financial

data, that is information that can be jointly used for rationing and pricing pur-

poses.

The equilibrium also features some borrowers sharing data. These borrow-

ers are deemed credit-worthy but likely to have a high cost of effort according to

their data points. As a consequence, they get incentive payments that are strictly

higher than what they would get from no-disclosure. This induces them to sepa-

rate from the no-disclosure pool by sharing data. The incentives to separate are

weaker and weaker for lower and lower data points so that the unraveling stops

at some point and prevents full disclosure from happening in equilibrium.

The threshold l(λ) that separates the disclosure region from the lower no-disclosure

region is determined by an indifference condition. The borrower with data realiza-

tion s = l(λ) gets the same incentive payment after disclosure and no disclosure

since the lender’s inference is such that Eλ(θ|∅) = Eλ(θ|s = l(λ)). Notably, the

threshold l(λ) is decreasing in the rationing threshold r(λ). This happens for

the following reasons. Increasing the rationing threshold reduces the mass of

rationed borrowers that withhold data. From the lender’s perspective, no disclo-

sure is more likely to come from borrowers with low data points, and thus the

12See the ”Voluntary Disclosure” sub-section in Section 2 for papers explaining no-disclosure
in settings with disclosure costs, limited attention, limited evidence, and so on.
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lender reduces the incentive payment for borrowers that withhold data as the

pool is more efficient. As a consequence, borrowers with low data points have

lower benefits of being pooled with rationed borrowers and thus they disclose

more, reducing l(λ).

The equilibrium withholding of information can be interpreted as a form of

gaming by which borrowers get better terms by hiding unfavorable informatin.

The extent of gaming can be measured by the mass of borrowers withholding data,

i.e. by the size of the set G(λ). Since r(λ) and l(λ) are respectively decreasing

and increasing, the extent of gaming increases when data is more informative

and the allocation rule relies more strongly on it. When λ increases, the rule

induces more rationing and thus more data-withholding by rationed borrowers.

This gives further incentives to borrowers with low data points to withhold them

as this allows them to get even higher payments.

Gaming obviously leads to an information loss to the lender, and this loss is

increasing in the data-sensitivity of the allocation rule as captured by λ. Inter-

estingly, one can show that if λ were a choice variable, the lender would choose

an intermediate data sensitivity balancing the increased predictive ability of the

allocation rule with information loss due to the borrower’s gaming behavior. This

result is related to a number of papers studying the optimal design of allocation

rules when agents manipulate data and finding that the optimal rule under-

utilizes data to attenuate the information loss13. In these papers, as in mine,

gaming is made possible by the transparency of the allocation rule. Borrowers

need to know the rationing threshold r(λ) to form the equilibrium data-sharing

strategy. In Section 5.2, we explore whether gaming can be attenuated by mak-

ing the rule opaque instead of less data-sensitive.

Before proceeding with the analysis of opaque scoring rules a comment on

equilibrium uniqueness is in order. The equilibrium identified in Proposition 1

is not the unique Perfect Bayesian Equilibrium of the game. Together with that

equilibrium, there exists another equilibrium where all the borrowers disclose and

the lender allocates them credit according to Lemma 1, and the lender denies

credit to borrowers withholding data. I discard this less interesting equilibrium

13See the ”Strategic Classification” sub-section in Section 2.
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as it does not satisfy a number of plausible equilibrium refinements. First, the

disclosure strategy is not an equilibrium of a perturbed game where a fraction of

borrowers is privacy concerned14. Second, the equilibrium is not stable as it is

not trembling-hand perfect15. Third, the equilibrium preferred by the borrower

is the one in Proposition 1. For clarity of exposition, rather than fully considering

these model modifications, I prefer to allow for equilibrium multiplicity and focus

on the equilibrium that survives these perturbations.

5.2 Opaque Algorithms

In this section, I consider the borrowers’ voluntary data-sharing decision when

the allocation rule is opaque. I show that opacity makes data-sharing risky,

exposing the borrowers to the threat of credit rationing. As a consequence,

rational borrowers hedge this risk by withholding information.

When the allocation rule is opaque the data-sharing equilibrium is described in

the following proposition.

Proposition 2 (Equilibrium under Opacity). With opaque algorithms, there

exists an equilibrium where the borrower’s data-sharing strategy is:

m(s) =

 ∅ if s ∈ [0, a(b)] ∪ [b, 1] ≜ H(b)

s if s ∈
(
a(b), b

)
,

(9)

where b ∈ (r(1), 1) solves (30) and a(b) ≜ −
(
1− b

)
+
√
2
(
1− b

)
∈ (0, r(1)).

The lender allocates credit according to Lemma 1 to all borrowers that share data,

while she allocates credit to all borrowers withholding data according to:

ℓλ(∅) = 1 ∀λ,

xλ(∅) =
X + Eλ(θ|∅)

2
.

(10)

Proof. See the Appendix. ■

14Alternatively, one can think of privacy-concerned borrowers as not having hard information
to disclose as in Dye (1985). See Appendix B for details.

15If all the borrowers tremble and do not disclose with some small probability, then the lender
finds optimal to provide credit following no disclosure due to Assumption 1. If this is the case
then the equilibrium in Proposition 1 emerges.
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The nature of the equilibrium data-sharing strategy under opacity is similar

to the one under transparency. In particular, borrowers with extremely low

and extremely high data realizations withhold data as they expect better terms

than if they share them. In other words, the opaque scoring rule is still subject

to gaming in the form of strategic no disclosure of information. However, the

amount of data transmitted in equilibrium changes with respect to transparency.

To see why this happens consider the θ-borrower’s expected utility from full

disclosure of data16:

V B(s, θ) =


1

2α

1

1− λ

∫ 1

λ

(
xλ(s)− θ

)2
dλ if s ∈ [0, r(1))

1

2α

1

1− λ

∫ λ̂(s)

λ

(
xλ(s)− θ

)2
dλ if s ∈ [r(1), 1].

where λ̂(s) ≜ r−1(s) is the highest λ for which the data realization s gets

credit. Intuitively, the utility from data-sharing depends on the likelihood of

being credit rationed following disclosure. Data realizations in [0, r(1)) are safely

below the rationing threshold of each scoring rule and thus always get credit after

disclosure. For these borrowers, the randomness in λ impacts their utility only

through the payment they get. Higher expected payments are granted to higher

data realizations and thus the utility is increasing in s. More interestingly, data

realizations in [r(1), 1], get credit only if the true rationing threshold is suffi-

ciently high (or, equivalently, if the true data informativeness is sufficiently low).

Since higher data realizations are more likely to be credit-rationed, the utility

from disclosure is decreasing in s for these borrowers. Hence the utility from dis-

closure is non-monotonic in s, as under transparency, and this induces borrowers

with very low and very high data realization to withhold as the lender’s inference

following withholding does not lead to rationing (see Section 5.1 for more details).

More importantly, the thresholds that separate the disclosure and the no-disclosure

regions are now both determined by an indifference condition. The lower thresh-

old a(b) is such that the borrower with data realization s = a(b) gets the same

expected payment for under both disclosure and no disclosure, and is such that

Eλ(θ|∅) = Eλ(θ|s = a(b)) for every λ. Consider instead the borrower with data

16As we did for Proposition 1, we provide the intuition behind the result abstracting from
learning effects: that is we consider V B(s, θ) instead of E(V B(s, θ)|s).
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realization s ∈ [r(1), 1]. The algorithm opacity exposes them to risk when they

share information. On the one hand, disclosing data may lead them to credit

rationing whenever the true algorithm applies a sufficiently low rationing thresh-

old. On the other hand, by sharing data they may obtain pretty high incentive

payments if they have the chance of getting credit. On the contrary, withholding

data is a secure strategy that hedges the borrower against the risk of being ra-

tioned. In fact, the lender always provides credit to borrowers withholding data,

but she does so at a moderate incentive payment reflecting the average data re-

alization in the no-disclosure pool. For the borrower with data point s = b, these

two effects perfectly balance out.

6 Welfare Analysis

So far, we quantified the information loss resulting from the voluntary data-

sharing decisions of rational borrowers: transparent algorithms allow for gaming,

while opaque algorithms induce hedging. This last section analyzes further this

trade-off and determines which transparency regime is preferred by the lender

and by the credit market as a whole.

6.1 First Best Allocation

We start by studying the first best allocation. We define the first best as the

effort and credit provisions that maximize utilitarian social welfare (or social

surplus), i.e. the sum of the lender’s and the borrower’s profits. Moreover, the

social planner faces no information frictions knowing the borrower’s cost of effort

θ (no hidden information problem), and mandating the borrower’s effort choices

(no hidden action problem).

Lemma 2 (First Best). The first best level of effort and credit allocation are:

e∗(θ) = min

{
X − θ

α
, 1

}
,

ℓ∗(θ) = 1.

(11)

Proof. See the Appendix. ■
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An implication of Lemma 2 is that the market solution (see Lemma 1) entails

inefficiently low levels of effort no matter the lender’s information, since

e∗(θ) >
X+Eλ(θ|s)

2 − θ

α
∀ s ∈ [0, 1],

leading to (weakly) excessive credit rationing

ℓ∗(θ) ≥ 1{s<r(λ)},

since every borrower’s type should get credit but borrowers with high data real-

izations s are credit rationed in the market solution. This happens because every

borrower generates a positive surplus, but the lender appropriates only part of

it because of the agency rent left to the borrower and finds it optimal to ration

credit to borrowers that a planner would fund.

6.2 Lender-Optimal Transparency Regime

First, note that the amount of information being withheld in equilibrium can both

be higher or lower under opacity. In particular, opacity increases data-sharing

when the predictive power of data is sufficiently high, that is when the allocation

rule relies strongly on data. This happens when 1 −
∫
H(b) ds > 1 −

∫
G(λ) ds,

which is the case when the algorithm applies a sufficiently low rationing threshold

r(λ) < b, or, equivalently when the predictive power of data is sufficiently high

λ > r−1(b) ≜ λ∗.

The following proposition shows that the lender’s profits are proportional to the

amount of information being shared by the borrowers.

Proposition 3. The lender’s profits are higher under opacity iff λ > r−1(b) ≜ λ∗.

Proof. See the Appendix. ■

Consider first the case where the predictive power of data is sufficiently low

λ < λ∗ so that the lender prefers a transparent algorithm. The optimal algorithm

applies a rationing threshold r(λ) > b and we can distinguish three sets of bor-

rowers depending on their equilibrium ex-post allocations in the two transparency

regimes:
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• borrowers with data points s ∈ [a(b), b] share information in both regimes

and thus get credit at the same incentive payments, granting the same

profits to the lender;

• borrowers with data points s ∈ [0, l(λ)] ∪ [r(λ), 1] withhold information in

both regimes but are paid lower incentive payments under transparency -

as the average borrower in the no disclosure pool is more efficient - which

provides higher profits to the lender;

• borrowers with data points s ∈ [l(λ), a(b)] ∪ [b, r(λ)] withhold data un-

der opacity, but disclose it under transparency, thus, the lender is able to

provide personalized incentive payments and increase her profits.

It follows, that when the predictive power of data is low, making the algorithm

opaque only reduces the amount of information being disclosed due to the bor-

rowers’ hedging behavior. This results in less price personalization, less efficient

incentive schemes, and a more risky no-disclosure pool.

Consider next the case where the predictive power of data is higher λ > λ∗ and

the lender prefers opacity. Proceeding as above, we can identify groups of bor-

rowers for which opacity allows price discrimination and improves the quality of

the no-disclosure pool due to boosted data-sharing resulting in equilibrium. On

top of that, opacity allows the lender to deny credit to some borrowers. Borrow-

ers with data points s ∈ [r(λ), b] share information only under opacity, as the

rationing threshold is unknown and lower than expected. All in all, when the pre-

dictive power of data is sufficiently high, opacity increases price personalization,

ameliorates the no-disclosure pool, and allows for credit rationing, ultimately

raising the lender’s profits.

6.3 Welfare-Optimal Transparency Regime

The following proposition shows that the lender’s transparency choices are in gen-

eral socially inefficient, as a social planner would choose transparency whenever

the lender would choose opacity (and vice versa).

Proposition 4. Social welfare is higher under transparency iff λ > r−1(b) ≜ λ∗.

Proof. See the Appendix. ■
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The key to understand this result is to note that social welfare is decreas-

ing in the amount/precision of information available to the lender. This in turn

implies that the transparency regime that maximizes social welfare is the one

that minimizes the amount of information available to the lender. Consider the

situation where the lender owns the borrower’s data (Lemma 1) and consider

an increase in data precision λ. First, there is a credit rationing effect: an in-

crease in λ reduces credit provision to borrowers with positive surplus projects

and so reduces social welfare (see Lemma 2). Second, there is a redistribution

effect. As λ increases, incentive schemes become more sensitive to data, causing

reallocation of productive effort from better-than-average borrowers (those with

s < E(θ)) to worse-than-average borrowers (with s > E(θ)) without affecting

the overall amount of effort exerted. On the one hand, the NPV of the project

- a linear function of effort - remains constant. On the other hand, the overall

cost of effort increases because of the convexity of the cost function: a marginal

increase in effort surpasses the cost saved by an equivalent reduction. It follows

that the re-distributive effects of data are socially inefficient and, as a conse-

quence, the welfare-maximizing transparency regime is the one that minimizes

the information available to the lender.

6.4 Additional Welfare Measures

Transparency is optimal when we consider the projects’ NPV and financial in-

clusion (i.e. credit provision) as welfare measures.

Proposition 5. Credit provision and NPV are (weakly) higher under trans-

parency.

Proof. See the Appendix. ■

As discussed above, total effort levels and the project’s NPV do not depend

on the amount of information possessed by the lender. Hence, when we consider

NPV as a welfare measure, the optimal transparency regime is the one that max-

imizes credit provision. Since transparency never induces credit rationing, while

opacity does whenever λ > r−1(b), a transparent algorithm is weakly preferred

to an opaque one when the welfare measure is credit provision or the project’s

NPV.
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7 Conclusion

This paper studied whether lenders’ credit risk algorithms should be transparent

or opaque. It shows that transparency makes the lender’s model vulnerable to

gaming by strategic borrowers undermining the model’s ability to ration credit

efficiently. Not only do bad borrowers hide information to escape rationing, but

also very good ones do so to get better contractual terms. Opacity makes credit

rationing possible but also induces an information loss due to borrowers’ hedging

against the uncertainty it generates. Ultimately, both transparency regimes entail

a profit loss caused by the information withheld by strategic borrowers, and

what is best for the lender or the credit market as a whole depends on economic

conditions and data quality.

Some questions remain open for further research. First, the optimal transparency

regime may lie in between full transparency and full opacity. Partial disclosure

about the model’s parameters may grant better outcomes. Second, this paper

has analyzed data used in the lender’s screening process but may be interesting

to extend the analysis to data used in the monitoring process. Third, the paper

considers a monopolistic lender, studying a competitive market seems a natural

path for future research.
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Appendix

Lemma A.1 (Optimal Allocation for General Information Set). Given some information set
I, the lender’s optimal contract is:

ℓ(I) = 1{
E(θ|I)<X−

√
4α
},

x(I) = X + E(θ|I)
2

.

(12)

The lender’s profits, borrower’s utility, and social welfare are given by (16)-(18).

Proof. The borrower’s optimal effort level given his repayment in case of success x can be
derived by taking the first order condition of his maximization problem in Equation (2):

x− (θ + αe) = 0.

Solving this condition for e yields:

e =
x− θ

α
≜ e(θ).

Plugging this in the lender’s objective function her problem becomes:

max
x∈[0,X]
ℓ∈{0,1}

ℓ

(
x− E(θ|I)

α
(X − x)− 1

)

Taking the first order conditions with respect to x we get:

1

α

(
(X − x) +

(
x− E(θ|I)

)
(−1)

)
= 0,

and solving for x we get the optimal repayment to the borrower:

x =
X + E(θ|I)

2
≜ x(I). (13)

At the optimal incentive payment, the lender’s expected profits are:

VL(I) = max
ℓ∈{0,1}

ℓ

(
x(I)− E(θ|I)

α

(
X − x(I)

)
− 1

)
,

= max
ℓ∈{0,1}

ℓ

(
1

α

[(
X + E(θ|I)

2
− E(θ|I)

)(
X − X + E(θ|I)

2

)]
− 1

)
,

= max
ℓ∈{0,1}

ℓ

(
1

α

(
X − E(θ|I)

2

)2

− 1

)
.

The lender provides credit only if she makes positive expected profits, which happens when
the expected cost of effort is sufficiently low:

ℓ = 1{
E(θ|I)<X−

√
4α
} ≜ ℓ(I). (14)
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At the optimum, the lender’s expected profits are:

VL(I) = 1{
E(θ|I)<X−

√
4α
} ((X − E(θ|I)

2

)2

− 1

)
. (15)

At the optimum, the lender’s profits from the θ-borrower are:

VL(I, θ) = ℓ(I)

(
e(θ)

(
X − x(I)

)
− 1

)

= 1{
E(θ|I)<X−

√
4α
} (( 1

α

(
X + E(θ|I)

2
− θ

)
X − E(θ|I)

2

)
− 1

)
,

(16)

the θ-borrower’s utility is:

VB(I, θ) = ℓ(I)
(
e(θ)

(
x(I)− θ

)
− 1

2
αe(θ)2

)
= 1{

E(θ|I)<X−
√
4α
} 1

2α

(
X + E(θ|I)

2
− θ

)2

,

(17)

while the social welfare generated by the θ-borrower is:

W (I, θ) = VL(I) + VB(I)

= ℓ(I)
(
e(θ)X − 1−

(
θe(θ) +

1

2
e(θ)2

))
= ℓ(I)

(
1

α

(
X + E(θ|I)

2
− θ

)
X − 1− 1

2α

((
X + E(θ|I)

2

)2

− θ2

))
.

(18)

■

Lemma A.2 (Inference). Given a data-sharing strategy of the form:

m(s) =

 ∅ if s ∈ [0, a] ∪ [b, 1] ≜ S(a, b)

s if s ∈ (a, b)

where 0 < a < b < 1, the lender’s inference is:

Eλ(θ|s) =λs+ (1− λ)1/2,

Eλ(θ|∅) =λ

(
ω(a, b)

a

2
+
(
1− ω(a, b)

)1 + b

2

)
+ (1− λ)

1

2
,

(19)

where ω(a, b) = a
a+1−b .
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Proof. Given the data-generating process in (1), after observing s, the lender’s posterior
beliefs are:

fλ(θ|s) = λδ(θ − s) + (1− λ), (20)

where

δ(t− a) ≜

 ∞ if t− a = 0

0 if t− a ̸= 0,

is the Dirac delta function satisfying the following property:∫ a+ε

a−ε
f(t)δ(t− a)dt = f(a) ∀ε > 0.

Hence we have:

Eλ(θ|s) =
∫ 1

0
θfλ(θ|s)dθ,

= λ

∫ 1

0
θδ(θ − s)dθ + (1− λ)

∫ 1

0
θdθ,

= λs+ (1− λ)1/2.

(21)

The lender’s posterior beliefs following m = ∅ are:

fλ(θ|∅) =
Pr
(
s ∈ S(a, b)|θ

)
f(θ)

Pr
(
s ∈ S(a, b)

)
=

∫ a

0
λδ(θ − s) + (1− λ)ds+

∫ 1

b
λδ(θ − s) + (1− λ)ds∫ a

0
ds+

∫ 1

b
ds

=λ
1{θ ≤ a}+ 1{θ ≥ b}

a+ 1− b
+ (1− λ).

Thus we have:

Eλ(θ|∅) =

∫ 1

0
θ

(
λ
1{θ ≤ a}+ 1{θ ≥ b}

a+ 1− b
+ (1− λ)

)
dθ

=λ
1

a+ 1− b

(∫ a

0
θdθ +

∫ 1

b
θdθ

)
+ (1− λ)

∫ 1

0
θdθ

=λ

(
a

a+ 1− b

a

2
+

1− b

a+ 1− b

1 + b

2

)
+ (1− λ)

1

2
.

■

Proof of Lemma 1. The lemma follows from Lemma A.1 and Lemma A.2 replacing the
expectation in the first line of (19) in equations (13), (14) and(17). ■
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Proof of Proposition 1. Consider the candidate borrower’s data-sharing strategy:

m(s) =

 ∅ if s ∈ [0, a] ∪ [b, 1]

s if s ∈
(
a, b
)

where a, b are such that 0 < a < b < 1 and need to be determined.

We first determine the borrower’s value from data-sharing and data-withholding. The
lender’s optimal allocation and the resulting utility for a borrower of type θ are given in
Lemma A.1 replacing the inference in Lemma A.2 equation (19). Taking expectations over θ
we get the borrower’s value from data-withholding and data-sharing:

V B
λ (∅) = 1{Eλ(θ|∅)<X−

√
4α}

1

2α

∫ 1

0

(
X + Eλ(θ|∅)

2
− θ

)2

fλ(θ|s) dθ,

V B
λ (s) = 1{s< r(λ)}

1

2α

∫ 1

0

(
X + Eλ(θ|s)

2
− θ

)2

fλ(θ|s) dθ,
(22)

where

r(λ) = 1/2 +
1

λ

(
X −

√
4α− 1/2

)
. (23)

We now determine the equilibrium thresholds (a, b). Suppose the lender provides credit
after no data-sharing, that is Eλ(θ|∅) < X −

√
4α (this will be verified later). Since all the

data realizations s ∈ [r(λ), 1] are credit rationed if shared, the borrower prefers to withhold
them to get V B

λ (∅) > 0. Hence, in equilibrium, we have b = r(λ). The threshold a ∈
(
0, r(λ)

)
can be computed as the data realization that solves V B

λ (a) = V B
λ (∅). The equation reduces

to Eλ(θ|a) = Eλ(θ|∅) and further simplifies to:

a =
a

a+ 1− b

a

2
+

1− b

a+ 1− b

1 + b

2
.

The above equation has two solutions: one is negative and thus cannot be an equilibrium
threshold, while the other one is:

a = −
(
1− b

)
+
√
2
(
1− b

)
≜ a(b),

It follows that the equilibrium thresholds of the data-sharing strategy are:

a = a(r(λ)) ≜ l(λ),

b = r(λ).
(24)

where r(λ) ∈ (1/2, 1) by Assumptions 1 and 2 and a(r(λ)) ∈ (0, r(λ). ■
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Proof of Proposition 2. Consider the candidate borrower’s data-sharing strategy:

m(s) =

 ∅ if s ∈ [0, a] ∪ [b, 1]

s if s ∈
(
a, b
)

where a, b are such that 0 < a < b < 1 and need to be determined.

We first determine the borrower’s value from data-sharing and data-withholding. For a
given λ, the lender’s optimal allocation can be computed as in Proposition 1, so that the
resulting values for the borrower are given by equations (22). Taking expectation over λ we
get the borrower’s value from data-withholding and data-sharing. In particular, suppose the
lender provides credit after no data-sharing for every λ, that is Eλ(θ|∅) < X −

√
4α for any

λ ∈ [λ, 1] (this will be verified later), the borrower’s value from data-withholding is:

V B(∅) =

∫ 1

λ
V B
λ (∅)

1

1− λ
dλ

=
1

1− λ

1

2α

∫ 1

λ

∫ 1

0

(
X + Eλ(θ|∅)

2
− θ

)2

fλ(θ|s) dθdλ
(25)

while the value from data-sharing is:

V B(s) =

∫ 1

λ
V B
λ (s)

1

1− λ
dλ

=
1

1− λ

1

2α

∫ 1

λ
1{s<r(λ)}

∫ 1

0

(
X + Eλ(θ|s)

2
− θ

)2

fλ(θ|s) dθdλ

=
1

1− λ

1

2α

∫ min{1,λ̂(s)}

λ

∫ 1

0

(
X + Eλ(θ|s)

2
− θ

)2

fλ(θ|s) dθdλ,

(26)

where

λ̂(s) ≜ r−1(s) =
1

s− 1
2

(
X −

√
4α− 1

2

)
(27)

is the inverse function of the rationing threshold r(λ) defined in (23).

We now determine the conditions that defines the equilibrium thresholds (a, b). Suppose
that a ∈

(
0, r(1)

)
and b ∈

(
r(1), 1

)
so that λ̂(a) > 1 and λ̂(b) < 1. The thresholds a, b can be

computed as the data realizations that solve the following system of equations:

∫ 1

λ

∫ 1

0

(
X + Eλ(θ|a)

2
− θ

)2

fλ(θ|a) dθdλ =

∫ 1

λ

∫ 1

0

(
X + Eλ(θ|∅)

2
− θ

)2

fλ(θ|a) dθdλ∫ λ̂(b)

λ

∫ 1

0

(
X + Eλ(θ|b)

2
− θ

)2

fλ(θ|b) dθdλ =

∫ 1

λ

∫ 1

0

(
X + Eλ(θ|∅)

2
− θ

)2

fλ(θ|b) dθdλ.

(28)
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The first equation has a unique solution for a ∈ (0, r(1)), this is:

a = −(1− b) +
√
2(1− b) ≜ a(b).

for which we have:
Eλ

(
θ|∅) = Eλ(θ|a(b)

)
= λ

(
a(b)

)
+ (1− λ)

1

2

(29)

for every λ. Substituting (29) in the right-hand side of the second equation in (28) we get
the equilibrium condition for b:

L(b) = R(b), (30)

where

L(b) ≜
∫ λ̂(b)

λ

∫ 1

0

(
X + λb+ (1− λ)12

2
− θ

)2

fλ(θ|b) dθdλ

R(b) ≜
∫ 1

λ

∫ 1

0

(
X + λ

(
a(b)

)
+ (1− λ)12

2
− θ

)2

fλ(θ|b) dθdλ.

We now show that L(b) and R(b) cross in the interval (r(1), 1). To see this note that:

lim
b→r(1)

L(b) =

∫ 1

λ

∫ 1

0

(
X + λ r(1) + (1− λ)12

2
− θ

)2

fλ(θ|r(1)) dθdλ,

lim
b→r(1)

R(b) =

∫ 1

λ

∫ 1

0

(
X + λ

(
a(r(1))

)
+ (1− λ)12

2
− θ

)2

fλ(θ|r(1)) dθdλ,

lim
b→1

L(b) = 0,

lim
b→1

R(b) =

∫ 1

λ

∫ 1

0

(
X + (1− λ)12

2
− θ

)2

fλ(θ|1) dθdλ.

(31)

The first line in (31) follows from the fact that λ̂(r(1)) = 1 (see (27)), while the third line
follows from the fact that λ̂(1) = λ (see (27) and Assumption 3). The second and last lines
are trivial. It follows that:

lim
b→r(1)

L(b) > lim
b→r(1)

R(b),

lim
b→1

L(b) < lim
b→1

R(b).
(32)

The first line in (32) follows from the fact that the integrand on the right-hand side is
greater than the integrand on the left-hand side for every λ since Assumption 2 implies that
r(1) ∈ (1/2, 1) so that r(1) > a(r(1)) = −(1−r(1))+

√
2(1− r(1)). The second line is trivial.

■

Proof of Lemma 2. The social planner solves:
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max
e∈[0,1]
ℓ∈{0,1}

ℓ

(
eX − 1−

(
θe+

1

2
αe2
))

. (33)

The first order conditions with respect to e is:

X − θ − αe = 0,

and is solved for e = X−θ
α , which is the optimal effort level whenever it is lower than 1. We

denote the optimal effort level as

e∗(θ) ≜ min

{
1,

X − θ

α

}
.

Social welfare at the optimal effort level is

W (e∗(θ)) =min

{
(X − θ)− 1

2
α,

1

2α
(X − θ)2

}
− 1

=

{
(X − θ)− 1

2α− 1 if θ ≤ X − α
1
2α (X − θ)2 − 1 if θ > X − α.

Note that

W (e∗(1)) ≥ 1

2α
(X − 1)2 − 1 > 0,

where the second inequality is equivalent toX > 1+
√
2α which is satisfied under Assumptions

1 and 2. Since W (e∗(θ)) is a continuous and decreasing function of θ and W (e∗(1)) > 0, social
welfare is positive for every θ and it is socially efficient to provide credit to every borrower,
i.e.

ℓ∗(θ) = 1 ∀θ ∈ [0, 1].

■

Proof of Proposition 3. Fix some s ∈ [0, 1] and some z ∈ (1/2, 1), and define the following
functions

a(z) ≜− (1− z) +
√

2(1− z),

mz(s) ≜

 ∅ if s ∈ [0, a(z)] ∪ [z, 1]

s if s ∈
(
a(z), z

)
,

K(s) ≜
1

α

(
X −

(
λs+ (1− λ)12

)
2

)2

,

H(z) ≜
(
a(z) + 1− z

)
K(a(z)) +

∫ z

a(z)
K(s)ds.

(34)

The proof of the proposition follows from the following three claims.
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Claim 1. For a given λ, the lender’s equilibrium profits under transparency and opacity are,
respectively:

V L
T (λ) = H(r(λ))− 1, (35)

and

V L
O (λ) =


H(b)− 1 if b < r(λ)

H(b)− 1−
∫
(r(λ),b)

K(s)− 1 ds if b ≥ r(λ).
(36)

where H(z) is defined in (34), r(λ) is defined in (3), and b solves (30).

Proof. From Lemma A.1, we know the lender’s realized profits at the optimum VL(I, θ)
when she faces a borrower of type θ and holds some information I (see Equation (16)).
From Proposition 1 and Proposition 2, we know the equilibrium disclosure strategies under
transparency and opacity are respectively mr(λ)(s) and mb(s) where mz(s) is defined in (34),
r(λ) is defined in (3), and b solves (30). Hence, we can compute the equilibrium profits of
the lender for a given λ by integrating VL(mz(s), θ) at the equilibrium disclosure strategies
in both transparency regimes.
First, consider the case of transparency. For a given λ, the lender’s equilibrium expected
profits are:

V L
T (λ) =

∫
[0,1]

∫
[0,1]

VL

(
mr(λ)(s), θ

)
fλ(θ, s) dθ ds,

=

∫
[0,1]

ℓλ(mr(λ)(s))

[
1

α

(
X + Eλ(θ|mr(λ)(s))

2
− Eλ(θ|s)

)
X − Eλ(θ|mr(λ)(s))

2
− 1

]
ds,

=

∫
[0,a(r(λ))]∪[r(λ),1]

1

α

(
X + Eλ(θ|∅)

2
− Eλ(θ|s)

)
X − Eλ(θ|∅)

2
ds +

+

∫(
a(r(λ)),r(λ)

) 1

α

(
X + Eλ(θ|s)

2
− Eλ(θ|s)

)
X − Eλ(θ|s)

2
ds− 1,

=
(
a(r(λ)) + 1− r(λ)

) 1
α

(
X − Eλ(θ|∅)

2

)2

+

∫(
a(r(λ)),r(λ)

) 1

α

(
X − Eλ(θ|s)

2

)2

ds− 1,

= H(r(λ))− 1,

(37)
where H(r(λ)) is defined in (34). The second line uses the lender’s realized profits as com-
puted in Lemma A.1 (Equation (16)). The third and fourth lines use the definition ofmr(λ)(s)
in (34) and the optimal credit allocation in Proposition 1. The fifth line follows from∫

[0,a(r(λ))]∪[r(λ),1]
Eλ(θ|s) ds =

(
a(r(λ)) + 1− r(λ)

)
Eλ(θ|∅). (38)

The last line uses the fact that Eλ(θ|∅) = Eλ(θ|s = a(r(λ))) by Proposition 1.
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Next, consider the lender’s profits under opacity. We distinguish two sub-cases depending on
whether there is ex-post credit rationing for the λ considered: i) b < r(λ), and ii) r(λ) ≤ b.
In case i) the lender’s expected profits are:

V L
O (λ) =

∫
[0,1]

∫
[0,1]

VL

(
mb(s), θ

)
fλ(θ, s) dθ ds,

= H(b)− 1.

(39)

This is due to the fact that there is no credit rationing, i.e. ℓλ(mb(s)) = 1 for all s ∈ [0, 1]
and the lender’s profits can be computed as in (37) replacing b to r(λ).
In case ii) the lender’s expected profits are:

V L
O (λ) =

∫
[0,1]

∫
[0,1]

VL

(
mb(s), θ

)
fλ(θ, s) dθ ds,

= H(b)− 1−
∫
(r(λ),b)

∫
[0,1]

[
1

α

(
X + Eλ(θ|s)

2
− θ

)
X − Eλ(θ|s)

2
− 1

]
fλ(θ, s)dθds,

= H(b)− 1−
∫
(r(λ),b)

K(s)− 1 ds,

(40)
whereH(b) andK(s) are defined in (34). Note that data realizations s ∈ [r(λ), b] are disclosed
and do not get credit yielding nil profits to the lender, i.e. ℓλ(mb(s)) = 0 for s ∈

(
r(λ), b

)
and

ℓλ(mb(s)) = 1 for s ∈ [0, r(λ)] ∪ [b, 1]. The second line follows from adding and subtracting
to the first line the profits that the lender would get by providing credit to borrowers with
s ∈ (r(λ), b) and performing computations similar to (37). ■

Claim 2. H(z) is strictly increasing.

Proof. We have

H ′(z) =
(
a′(z)− 1

)
K(a(z)) +

(
a(z) + 1− z

)
K ′(a(z))a′(z) +K(z)−K(a(z))a′(z),

=
(
a(z) + 1− z

)
a′(z)K ′(a(z)) +K(z)−K(a(z)),

(41)

where
a(z) + 1− z =

√
2(1− z),

a′(z) = 1− 1√
2(1− z)

< 0,

K ′(a(z)) = −λ
1

α

(
X − (λa(z) + (1− λ)12)

2

)
< 0,

K(z)−K(a(z)) = −λ
1

α

(
z − a(z)

)X −
(
λa(z)+z

2 + (1− λ)12

)
2

 < 0.

(42)
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Noting that: (
a(z) + 1− z

)
a′(z) =

√
2(1− z)

(
1− 1√

2(1− z)

)
,

= −
(
1−

√
2(1− z)

)
,

= −
(
z − a(z)

)
,

(43)

we have:

H ′(z) =
λ2

2α

(
z − a(z)

)(a(z) + z

2
− a(z)

)
,

=
λ2

4α

(
z − a(z)

)2
> 0.

■

Claim 3. V L
T (λ) > V L

O (λ) ⇐⇒ r(λ) > b.

Proof. For r(λ) > b we have V L
T (λ) > V L

O (λ) since H(z) is increasing in z. For b > r(λ)
we have V L

O (λ) > V L
T (λ) since H(z) is increasing in z and the integrand in the definition of

V L
O (λ) in (36) is negative for s > r(λ) by Lemma 1. ■

The proof of Proposition 3 follows from Claims 1-3. ■

Proof of Proposition 4. Fix some s ∈ [0, 1] and some z ∈ (1/2, 1), and define the following
functions:

M(s) ≜
1

α

(
X −

(
λs+ (1− λ)12

)
2

)
X − 1

2α

(
X + λs+ (1− λ)12

2

)2

,

J(z) ≜
(
a(z) + 1− z

)
M
(
(a(z)

)
+

∫ z

a(z)
M(s) ds+

1

6α
.

(44)

The proof of the proposition follows from the following three claims.

Claim 1. For a given λ, social welfare under transparency and opacity are, respectively:

WT (λ) = J(r(λ))− 1, (45)

and

WO(λ) =


J(b)− 1 if b < r(λ)

J(b)− 1−
∫
(r(λ),b)

∫
[0,1]

Ŵ (s, θ)fλ(θ, s) dθds if b ≥ r(λ).
(46)

where J(z) is defined in (44) and

Ŵ (s, θ) ≜
1

α

(
xλ(s)− θ

)
X − 1

2α

(
xλ(s)

2 − θ2
)
− 1. (47)
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Proof. From Lemma A.1, we know the realized social welfare at the optimum W (I, θ) when
the lender faces a borrower of type θ and holds some information I (see Equation (18)).
From Proposition 1 and Proposition 2, we know the equilibrium disclosure strategies under
transparency and opacity are respectively mr(λ)(s) and mb(s) where mz(s) is defined in (34),
r(λ) is defined in (3), and b solves (30). Hence, we can compute the equilibrium social
welfare for a given λ by integrating W (mz(s), θ) at the equilibrium disclosure strategies in
both transparency regimes.
First, consider the case of transparency. Expected social welfare is:

WT (λ) =

∫
[0,1]

∫
[0,1]

W
(
mr(λ)(s), θ

)
fλ(θ, s) dθ ds,

=

∫
[0,1]

ℓλ(mr(λ)(s))

[
1

α

(
xλ
(
mr(λ)(s)

)
− Eλ(θ|s)

)
X − 1− 1

2α

(
xλ
(
mr(λ)(s)

)2 − Eλ(θ
2|s)
)]

ds,

=

∫
[0,a(r(λ))]∪[r(λ),1]

1

α

(
X + Eλ(θ|∅)

2
− Eλ(θ|s)

)
X − 1

2α

(
X + Eλ(θ|∅)

2

)2

ds +

+

∫(
a(r(λ)),r(λ)

) 1

α

(
X + Eλ(θ|s)

2
− Eλ(θ|s)

)
X − 1

2α

(
X + Eλ(θ|s)

2

)2

ds +

+
1

2α

∫
[0,1]

Eλ(θ
2|s)ds− 1,

=
(
a(r(λ)) + 1− r(λ)

) [ 1
α

(
X − Eλ(θ|∅)

2

)
X − 1

2α

(
X + Eλ(θ|∅)

2

)2
]

+

+

∫(
a(r(λ)),r(λ)

) 1

α

(
X − Eλ(θ|s)

2

)
X − 1

2α

(
X + Eλ(θ|s)

2

)2

ds +
1

6α
− 1,

= J(r(λ))− 1,

(48)
where J(r(λ)) is defined in (44). The second line uses the social welfare as computed in
Lemma A.1 (Equation (18)). The third and fourth lines use the definition of mr(λ)(s) in
(34) and the optimal credit allocation in Proposition 1. The fifth line follows from (38) and
the fact that

∫
[0,1] Eλ(θ

2|s)ds =
∫
[0,1] λs

2 + (1 − λ)13ds = 1
3 . The last line uses the fact that

Eλ(θ|∅) = Eλ(θ|s = a(r(λ))) by Proposition 1.
Next, consider social welfare profits under opacity. We distinguish two sub-cases depending
on whether there is ex-post credit rationing for the λ considered: i) b < r(λ), and ii) r(λ) ≤ b.
In case i) expected social welfare is:

WO(λ) =

∫
[0,1]

∫
[0,1]

W
(
mb(s), θ

)
fλ(θ, s) dθ ds,

= J(b)− 1.

(49)
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Since there is no credit rationing, i.e. ℓλ(mb(s)) = 1 for all s ∈ [0, 1], social welfare can be
computed as in (48) replacing b to r(λ).
In case ii) expected social welfare is:

WO(λ) =

∫
[0,1]

∫
[0,1]

W
(
mb(s), θ

)
fλ(θ, s) dθ ds,

= J(b)− 1−
∫
(r(λ),b)

∫
[0,1]

[
1

α

(
xλ(s)− θ

)
X − 1− 1

2α

(
xλ(s)

2 − θ2
)]

fλ(θ, s) dθds,

= J(b)− 1−
∫
(r(λ),b)

∫
[0,1]

Ŵ (s, θ)fλ(θ, s) dθds,

(50)
where J(b) is defined in (44). Note that data realizations s ∈ [r(λ), b] are disclosed and do not
get credit yielding nil social welfare, i.e. ℓλ(mb(s)) = 0 for s ∈

(
r(λ), b

)
and ℓλ(mb(s)) = 1 for

s ∈ [0, r(λ)] ∪ [b, 1]. The second line follows from adding and subtracting to the first line the
social welfare generated by providing credit to borrowers with s ∈ (r(λ), b) and performing
computations similar to (48). ■

Claim 2. J(z) is strictly decreasing.

Proof. We have

J ′(z) =
(
a′(z)− 1

)
M(a(z)) +

(
a(z) + 1− z

)
M ′(a(z))a′(z) +M(z)−M(a(z))a′(z),

=
(
a(z) + 1− z

)
a′(z)M ′(a(z)) +M(z)−M(a(z)),

(51)

where

a(z) + 1− z =
√
2(1− z),

a′(z) = 1− 1√
2(1− z)

< 0,

M ′(a(z)) = −λ
1

2α

(
X +

X + (λa(z) + (1− λ)12)

2

)
< 0,

M(z)−M(a(z)) = −λ
1

2α

(
z − a(z)

)X +
X +

(
λa(z)+z

2 + (1− λ)12

)
2

 .

(52)

Noting that: (
a(z) + 1− z

)
a′(z) =

√
2(1− z)

(
1− 1√

2(1− z)

)
= −

(
1−

√
2(1− z)

)
= −

(
z − a(z)

) (53)
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we have:

J ′(z) = −λ2

4α

(
z − a(z)

)(a(z) + z

2
− a(z)

)
= −λ2

8α

(
z − a(z)

)2
< 0.

■

Claim 3. WT (λ) < WO(λ) ⇐⇒ r(λ) > b.

Proof. For r(λ) > b we have WO(λ) > WT (λ) since J(z) is decreasing in z. Consider now

b > r(λ). Note that Ŵ (s, θ) can be rewritten as

Ŵ (s, θ) =
1

α

(
xλ(s)− θ

)
X − 1

2α

(
xλ(s)

2 − θ2
)
− 1,

=
1

α

(
xλ(s)− θ

)
X − 1

α

(
θ +

1

2
(xλ(s)− θ)

)
− 1,

=
1

α

(
xλ(s)− θ

)
(X − θ)− 1

2α

(
xλ(s)− θ

)2 − 1.

(54)

Since Ŵ (s, θ) is convex in θ, by Jensen’s inequality, we have:

∫
[0,1]

Ŵ (s, θ)fλ(θ, s)dθ ≥ Ŵ

(
s,

∫
[0,1]

θfλ(θ, s)dθ

)
,

=
1

α

(
xλ(s)− Eλ(θ|s)

)(
X − Eλ(θ|s)

)
− 1

2α

(
xλ(s)− Eλ(θ|s)

)2 − 1,

=
3

8α
(X − Eλ(θ|s))2 − 1 > 0,

(55)
where the last inequality is satisfied even when Eλ(θ|s) = 1 under Assumption 1 and 2. It
follows that, for b > r(λ), we have WT (λ) > WO(λ) since J(z) is decreasing in z and the
integral in the definition of WO(λ) in (46) is positive. ■

The proof of Proposition 4 follows from Claims 1-3. ■

Appendix B

Consider the following modification of the model described in Section 3. There exists a mass
π ∈ (0, 1) of privacy-concerned borrowers that never share data. The remaining mass 1 − π
share data strategically. In other words, borrowers have a random disclosure cost c ∈ {0,∞}
where Pr(c = ∞) = π and the randomness in disclosure cost is independent of θ or s.
Alternatively, one can think of privacy-concerned borrowers as not having hard information
to disclose to the lender as in Dye (1985).
Consider the following data-sharing strategy:
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m(s) =

 ∅ if s ∈ [ŝ(λ), 1]

s if s ∈
[
0, ŝ(λ)

)
.

(56)

The lender’s inference after no data-sharing can be shown to be:

E(θ|∅) = ω(π)
1

2
+
(
1− ω(π)

)(
λ
ŝ(λ) + 1

2
+ (1− λ)

1

2

)
, (57)

where ω(π) = π/
(
π + (1 − π)(1 − ŝ(λ))

)
. The optimal contract is as in Lemma 1 with

E(θ|∅) given by (57).
The data-sharing strategy is not an equilibrium if π ∈ (π, 1]. To see this consider a deviation
of the borrower with data realization s = 0. By sharing data, the lender’s inference after
disclosure is:

E(θ|s = 0) = (1− λ)
1

2
. (58)

Since ŝ(λ) > 1/2 by Assumption 1, we have that

E(θ|∅) > 1/2 > (1− λ)
1

2
= E(θ|s = 0),

so that the borrower with data realization s = 0 gets a strictly higher payment after no
data-sharing. This is a profitable deviation if the lender is willing to provide credit after no
data-sharing, i.e. if E(θ|∅) < X −

√
4α. This happens if π is sufficiently high.
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