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Abstract

We evaluate the performance of AI-managed funds. Using a hand-collected dataset of AI-

managed U.S. mutual funds our analysis reveals that, while these funds do not outperform

a market benchmark, they nonetheless generate slightly higher cumulative returns than their

human-managed counterparts with similar investment objectives and fund characteristics. No-

tably, we observe a recent decline in the performance of AI-enhanced funds. Our findings

indicate that, compared to their peers, these funds excel in market timing but struggle with

stock selection. AI-managed funds tend to be less active. In addition, our findings indicate

continued underperformance in both, AI and rival funds, with weak evidence of momentum in

successful AI funds and reversal in rival funds.
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1 Introduction

Previous literature has investigated the potential of including artificial intelligence (AI) in asset

pricing contexts (e.g. Gu et al., 2020, Freyberger et al. (2020), Chen et al. (2024), Azevedo et al.

(2023b), etc). However, Chen and Velikov (2023) show that most anomalies disappear once one

accounts for external costs. Likewise, most AI-enhanced portfolio strategies report extremely high

(paper) returns and subsequent high Sharpe Ratios (SR). Considering the limitations and over-

looked costs associated with AI strategies (e.g. limits-to-arbitrage or post-publication decay), we

aim to investigate the actual profitability of AI portfolio strategies in this study. Unlike previous

research, which often neglects or proxies expenses, we adopt a hands-on approach. We screen all

U.S. mutual funds for AI, machine learning (ML), or deep learning (DL) components in the port-

folio creation process and investigate whether they have superior returns compared to conventional

funds. This approach provides a more accurate, real world assessment of the profitability of AI-

enhanced strategies.

Our findings indicate that the AI-managed funds investigated do not outperform a market portfolio.

However, when compared to peer funds that are matched upon having similar fund characteristics,

AI funds exhibit comparable performance.

Moreover, our analysis highlights the significance of how AI is utilized. Portfolios incorporating

AI in the early stages of portfolio construction, such as for screening undervalued assets based on

predefined characteristics, outperformed a subgroup of portfolios that utilized AI for optimizing

allocations, such as estimating expected returns and variances. The former group of portfolios

demonstrated substantially higher returns compared to the latter. Additionally, portfolios utilizing

AI in the initial stages of portfolio construction exhibited significantly lower levels of activity.

In Section 2, supplemented by Appendix A, we outline our approach to distinguishing AI-managed

funds from those that do not employ AI in their asset management processes. We screen the in-

vestment descriptions of funds through their 497K filings for AI-related keywords and manually

verify matched funds. While this method ensures that the identified funds utilize some form of

AI, machine learning, deep learning, etc., it has limitations. Ambiguous terms such as ”quantita-

tive methods,” ”mathematical models,” or ”statistical analysis” hint at AI utilization but do not
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definitively identify AI-managed funds. Consequently, such cases are excluded from our AI fund

sample to maintain accuracy. This approach results in a selection bias, as we focus only on funds

explicitly framing themselves as AI-enhanced, leading some to refer to our sample as AI-labeled

rather than AI-optimized. We acknowledge this distinction and use both terms interchangeably,

allowing readers to draw their own interpretations.

AI funds are compared to the market portfolio. Alternatively, we match similar funds to each

identified AI fund. Conventional and AI funds are categorized by their attributes, such as size,

momentum, or dividend yield. Close ”neighbours” of AI-labelled funds are then bundled into a

rival portfolio. This method allows for better comparisons, since it creates a fictional Non-AI port-

folio with similar properties to the AI fund, leading to an appropriate counterfactual. Section 2

outlines how we match funds and the specifications in more detail. Additionally, Section 5 explores

alternative specifications.

We test whether the advantages of AI over human fund managers translates into higher yields

compared to conventional funds and the market benchmark. Our findings indicate that while

AI-powered funds do not outperform the aggregate stock market, neither do comparable conven-

tional rival funds demonstrate a sustainable advantage over AI funds. A portfolio comprising equal

weights of AI funds yields a SR of 0.122 over the observation period. In comparison, a similar

portfolio composed of conventional benchmark funds, which we match based on similar fund at-

tributes, yields a SR of 0.153 during the same period, with the difference in SRs being statistically

insignificant.

In a second step, we delve into the stock selection and timing abilities of AI funds. Leveraging AI

technology allows funds and managers to process an unprecedented volume of data when making

investment decisions. Pástor et al. (2020) decompose the excess return of a fund into two compo-

nents: a fund-specific variable capturing the overall skill level of the fund, and a second component,

namely a function that measures how actively a given fund exploits this specific set of skills. Build-

ing on this decomposition, we test two additional hypotheses. First, we investigate if AI funds

exhibit any considerable level of skill. And consequently, we examine how actively an AI fund

applies that skill. Our results in Section 3 reveal that, on average, AI funds display lower activity

levels than their peers, especially those that apply AI at earlier stages of portfolio management.
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Our results, further, reveal that AI funds exhibit timing abilities that surpass those of their rivals

by 48 basis points (bps). However, this advantage is offset by an inferior stock-picking ability worth

58 bps.

Our study strongly relates to the findings of Chen and Ren (2022). We also find that AI funds

per se do not outperform the market benchmark and one composed of similar rival funds. Addi-

tionally, we sub-categorize the results to explore the implications of employing AI in an early stage

of portfolio management, including screening the investable universe and identifying potentially

profitable assets, as well as using AI in a later stage to optimize allocation strategies. Furthermore,

we include additional data in our analysis, which adds significant value to the study. The interest

in ”Artificial Intelligence” surged post-20201. Consequently, we also observe a considerable increase

in the number of funds compared to the 15 AI-managed funds examined in the comparative study.

We further distinguish our research from other papers in several ways: While many prior investiga-

tions focus on AI-enhanced portfolio strategies, most are based on hypothetical returns. In contrast,

our analysis centres on mutual fund data, allowing us to examine real-world strategies in action.

This means we assess outcomes after factoring in actual trading fees, management fees, market

impacts induced by trading, information costs, and other associated fees. Previous studies often

rely on proxies for these costs, limiting their accuracy. Additionally, some theoretically profitable

AI-enhanced strategies may not be feasible in practice due to factors like high turnover, limited

liquidity for certain assets, post-publication decay, and other constraints to arbitrage (Avramov

et al., 2023, Chen and Velikov, 2023).

The previous literature already investigated the potential upsides of AI over human investors. One

notable advantage is AI’s capability to analyze vast amounts of data — from news reports to

financial statements to macroeconomic indicators. Noteworthy examples of AI’s agility in decision-

making include Deep Blue’s victory over Garry Kasparov, the then-reigning chess champion, in

1997, and AlphaGo’s triumph over Lee Sedol, one of the top human players, in four out of five

games of ”Go”2 in 2016. Drawing from those landmark achievements, it’s evident that AI excels

1According to Google’s global interest index, interest in ”Artificial Intelligence” was rated at 11 (out of 100) in
December 2019, marking the end of the time-frame analyzed by Chen and Ren, 2022. However, as of February 2024,
this index has reached its all-time high, defined at 100.

2”Go” is widely regarded as one of the most complex board games.
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in complex decision-making tasks. AIEQ, the pioneering AI fund, claims to leverage historical

and real-time economic data alongside analyzing one million news reports concurrently for security

selection3. This capability enables AI to make decisions swiftly, surpassing the potential cognitive

limitations and behavioural biases inherent in human fund managers. Studies such as those by

Linnainmaa et al. (2021) have highlighted human managers’ tendencies towards excessive trading,

return chasing, and underdiversification, which have contributed to declining fund performance over

time. In that regard, Barras et al. (2010) find a significant proportion of skilled (positive alpha)

funds before 1996, but almost none by 2006. As a result, AI could pose an unbiased and data-

driven alternative to improve security selection. Previous studies report higher SR for AI-enhanced

strategies compared to linear alternatives. Some extreme cases, report SR beyond 2.0 and alphas

beyond 13 % (Chen et al., 2024, Cong et al., 2021).

Those mentioned advantages led to research that included AI in trading strategies with exceptional

risk-adjusted performances. Yet the applicability in real funds has not been answered: Kelly et al.

(2024) theoretically demonstrate that ”complex” models, with parameters exceeding the number

of observations, should outperform simpler models in terms of return predictability. Azevedo et al.

(2023a) test several sophisticated ML algorithms with constraints to reduce turnover rates and fur-

ther cost mitigation techniques and accounting for trading costs through bid-ask estimates. Their

ML-based strategies produce significant out-of-sample average monthly returns of up to 1.42% after

estimated costs. On the other hand, Chen and Velikov (2023) show that anomalies disappear, when

accounting for (1) transaction costs, (2) post-publication decay (c.f. McLean and Pontiff, 2016),

and (3) higher liquidity and lower trading costs due to the new trading technologies that were

implemented in the early 2000s (c.f. Chordia et al., 2014). This is even before accounting for other

costs such as price impact, short-sale fees, or fund-related fees that arise when these anomalies

are subsequently managed through a fund. Also, this does not account for further errors such as

non-standard errors (see e.g. Walter et al., 2023). Furthermore, Martin and Nagel (2022) argue

that an increase of predicting variables, i.e. information that may be processed, through machine

learning still may lead to overfitting and that a Bayesian investor should still look for risk-based

or behavioural explanations to make predictions and subsequent investment decisions. Chen and

Ren (2022) take a real market approach and identify the first AI-managed funds available to in-

vestors and measure their performance. Similar to Chen and Velikov (2023) they do not find strong

3see https://amplifyetfs.com/aieq/
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evidence for an outperformance of AI-managed strategies. However, their sample is rather short

(due to the first AI-managed fund being launched in October 2017), which makes finding strong

evidence difficult.

From an asset perspective, previous studies suggest that AI may also help to improve market ef-

ficiency. AI can process vast amounts of data, including data that would not have been incurred

by human managers, and trade upon it. The initially neglected data may then find its way into

market prices through AI-related trades. This may then enhance price informativeness, potentially

leading to greater market efficiency (c.f. Zhu, 2019, Dugast and Foucault, 2018, Grennan and

Michaely, 2021, etc.). However, Farboodi and Veldkamp (2020) argue that while increased price

informativeness can reduce uncertainty regarding future payoffs, it also amplifies price sensitivity

to shocks in expectations of cash flows or stock demand, introducing new sources of risk. Addi-

tionally, the authors highlight that as technology advances and price informativeness rises, trading

against non-informed participants becomes a profitable strategy. This leads to funds that use AI

to time the markets through statistical arbitrage, retail market making, countercyclical trading,

or profiting off other investors’ behaviour rather than buying undervalued stocks. AI, therefore,

introduces the possibility of influencing picking and timing skills. Contrary to that, Begenau et al.

(2018) suggest that data availability is mainly prevalent for large firms. As a result, price informa-

tiveness would only increase for large firms, leaving small firms out. Consequently, algorithms may

overlook smaller firms, reducing their picking skill, or alternatively, leading to higher mispricing in

these stocks, enabling AI funds to identify and exploit those, leading again to an increased picking

activity.

This study proceeds as follows: We provide a concise overview of our datasets and the method-

ology for identifying AI-managed funds in Section 2, with a detailed explanation in Appendix A.

Additionally, in Section 2, we outline how we match benchmark funds to each identified AI-labeled

fund and compute the measures used to quantify the effects of AI in portfolio creation and opti-

mization. The subsequent sections delve into our main analysis and present the results in Section 3

and Section 4. In Section 5 we revisit parts of the analysis and alter some of the specifications used

in the two previous sections to test the robustness of our results. Finally, Section 6 summarizes our

findings.

6



2 Data & Methodology

2.1 Data

For US mutual funds data, we rely on the CRSP Survivor-Bias-Free U.S. Mutual Fund Database.

Stock prices, returns, and dividends are from the monthly CRSP files. Balance sheet and income

statement data at the firm level are from COMPUSTAT. We obtain factor returns and the risk-free

rate from Kenneth French’s website4. Inflation is the change in the Consumer Price Index (All

Urban Consumers)5 from the U.S. Bureau of Labor Statistics. Data on the US business cycle is

from the National Bureau of Economic Research (NBER)6.

2.2 Identifying AI-managed funds

We rely on SEC filings of the funds at the CIK level, which we subsequently merge with the CRSP

mutual fund database. We especially focus on SEC filing 497K. The Summary Prospectus 497K

contains general information about the respective fund itself, such as e.g. the fee structure, assigned

manager, a fund description, or an outline of its applied methodology. The latter one is the one

we are interested in. We string-search a predefined library of keywords in the Summary Prospec-

tus. For all matches, we read through the description of the fund and its described methodology

and decide based on the provided information, whether the fund tries to enhance its performance

through the help of AI. We only label a fund as an AI fund if we are certain that AI is employed7.

In ambiguous cases, we abstain from adding the fund to our sample of AI funds. A more detailed

description of the filters we apply, the keywords we use and other additional information in that

regard is in Appendix A.

We, further, sub-classify AI funds into two sub-groups based on the stage of portfolio management

at which the fund resorts to AI. The first group applies AI to screen the market for an investable

universe or mispriced constituents. This can be, e.g. to discover all stocks that operate in a given

4https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
5Series Id: CUUR0000SA0
6https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions
7For instance, we found a fund that claims to employ ”LASSO” in its portfolio management process. One would

assume that they apply a ”least absolute shrinkage and selection operator” (LASSO) regression to identify suitable
predictors of future premiums, or similar. However, upon further investigation, we found that this fund uses the
acronym ”LASSO” in the sense of ”Long and Short Strategic Opportunities”. Obviously, we eliminate such ”false
positives” from our sample of AI funds.
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industry to create an enhanced industry ETF. Another example would be to use AI to uncover all

stocks with a certain kind of mispricing that is not explicitly visible from balance sheet data. Zhu

(2019), for instance, finds that funds that incorporate such alternative data, for instance, satellite

data or consumer transactions, invest and divest more efficiently. Similarly, Grennan and Michaely

(2021) and Dugast and Foucault (2018) also suggest that such alternative data collected by fin-

techs or hedge funds may enhance price informativeness. This group is labelled AI in stock sel

in our results. The second sub-group includes AI in a later stage of portfolio construction. An

example would be to use AI to enhance predictions about future returns: Chinco et al. (2019), for

instance, find that their LASSO regressions select predominantly stocks that contain news about

fundamentals, leading to improved out-of-sample return predictions and subsequently to higher

Sharpe Ratios. We refer to this kind of fund as quant strat in our results.

However, our approach to identifying AI funds also faces a major flaw. We may only find those

funds that actively mention that they employ AI to enhance their portfolio. This might leave us

with a sample that inherits a selection bias, which may be coined ”AI-enhanced-labelled”. Funds

that claim to apply ”statistical methods” or ”quantitative analysis” could potentially also utilize

AI, ML or DL in their investment process. However, as long as they do not explicitly mention this

within their SEC filings, our methodology is not capable of distinguishing between funds that apply

”statistical methods” with a simple OLS and those that, for instance, compute multiple-layered

neural networks to update any priors on expected returns. Since this would constitute an ambigu-

ous case, we drop this fund from the list of identified AI funds. As a result, we identify those funds

that explicitly claim that AI is part of their portfolio management process. Our results might, thus,

alternatively be interpreted as how the label ”AI” influences returns or fund flows in addition to

or rather than whether AI itself affects portfolio returns. We leave that decision to the reader and

use the terms AI-managed and AI-labelled interchangeably.

2.3 Identifying benchmark funds

Besides the best possible identification of AI-optimized funds, the second crucial aspect of investi-

gating realized AI-related returns is the selection of an appropriate counterfactual. In that regard,

we adapt the methodology of Hoberg et al. (2018). The underlying idea is to define a set of fund

characteristics and subsequently find ”rival” funds that exhibit similar characteristics. The fund
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characteristics are derived from the individual characteristics of their respective holdings. Based on

(orthogonalized) ranks and z-scores they identify rival funds as funds with the smallest Euclidean

distance in an n-dimensional space, where n is the number of fund characteristics used. We alter

this methodology into a two-step approach. First, we filter all funds that operate within the same

fund style as provided by CRSP. Like this, we ensure we do not compare funds that follow different

objectives. We do not consider fund style in the matching vector since the fund style is measured by

a categorical variable, meaning that one cannot interpret distances between the categories. How-

ever, the methodology relies on those metric distances. In the second step, we search for similar

funds based on fund properties.

For the main analysis, we compute z-scores based on the value-weighted stock characteristics in

each fund. We winsorize all matching variables at the 1% and the 99% levels. We then orthogonal-

ize the respective z-scores. This gives us the matching vector Cf,t =
(
zlme zlmom zldy

)
, where

lme ≡ log(me), lmom ≡ log(1 + rt−2,t−12) and ldy is the log dividend yield. We then adapt the

cutoff distance d∗ = 8.858% from Hoberg et al. (2018). However, according to them, the results

are robust to the choice of d∗. We, furthermore, impose a minimum of ten rival funds to achieve a

broader sample of comparable fund performance. This process identifies several benchmark funds

for each of the previously identified AI-managed funds. We then proceed to aggregate these rival

funds, in an attempt to create a portfolio of rival funds that better mimic the characteristics of a

specific AI-enhanced fund. We employ two aggregations that differ only in the weights they assign

to the rival funds, equal weights and distance weights. The latter uses the inverse Euclidean dis-

tance to the respective AI fund as weight. In such a distance-weighted portfolio rival funds which

are more alike the AI fund receive a higher weight and vice versa.

2.4 Defining Measures of Skill and Activeness

In the model motivated by Pástor et al. (2020) the expected adjusted gross return is defined as the

product of a fund-specific constant representing skill and a function that quantifies how actively

9



that skill is measured. To measure the respective skill of an AI-enhanced fund or a rival fund we

adapt the timing and picking skill defined by Kacperczyk et al. (2014) as

Timingjt =
Nj∑
i=1

(
wj
i,t − wm

it

) (
βi,tR

m
t+1

)
(1)

and

Pickingjt =
Nj∑
i=1

(
wj
i,t − wm

it

) (
Ri

t+1 − βi,tR
m
t+1

)
, (2)

where N is the number of stocks that are in a fund’s portfolio, j.
(
βi,tR

m
t+1

)
in the Timing-

equation is the systematic part of the future returns.
(
Ri

t+1 − βi,tR
m
t+1

)
in the Picking-equation on

the other hand measures the idiosyncratic part of the future return of asset i within the portfolio.(
wj
i,t − wm

it

)
captures the over- or under-weighting that the portfolio has in a given stock compared

with the market benchmark, meaning how much the portfolio exposes itself to the systematic or

idiosyncratic part of the returns. This means that a fund with high ”timing” ability over- (under-

)weights high (low) beta assets before market upswings and, vice versa, over- (under)weights low

(high) beta assets before market downturns. Similarly, a fund with high ”Picking” ability, would

build up positions in stocks with high idiosyncratic returns in advance of market increases and

reduce them in sight of market downswings.

For the activeness measure we stick to the measure proposed by Pástor et al. (2020)8

Activeness = TL−1/2, (3)

where T is the turnover scaled by the NAV. L = (ΣN
i=1

w2
i

mi
)−1 is portfolio liquidity where N is the

number of stocks in a given portfolio, wi and mi are the respective weights of constituent i in

the fund’s portfolio and the market portfolio. Activeness is supposed to be positively related to

turnover – to generate excess returns an active fund has to move away from the (market) bench-

mark – and negatively with L, as mispriced stocks tend to be less liquid and smaller.

8Equation 37
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3 Performance

As we mention in the previous section, we identify 70 funds that apply artificial intelligence either

for screening the investable universe to identify suitable fund constituents or in the subsequent

stage for integrating selected stocks, bonds, etc., into a portfolio.

Figure 1 gives a first overview of the identified AI-managed funds. The left plot illustrates the

distribution of the size (measured by Assets under Management (AuM)) of these funds. At the

end of 2017, there was only one AI-managed fund, AIEQ. Subsequently, AIEQ experienced growth,

coinciding with the emergence of numerous new funds over time, as depicted in the right plot. The

solid grey line represents the total number of unique funds utilizing AI, while the dashed black

line adjusts for share classes and funds sharing the same portfolio. Those new funds started with

modest AuM9. Relative to these smaller funds, AIEQ’s magnitude became significant, resulting

in a notable spread between the 5th and 95th percentiles, particularly during the years 2020 to

2022. The issue with the smaller-sized funds is that overhead cost can be a substantial factor in

the performance after fees, which we want to investigate. Additionally, we posit that funds may

not accord adequate attention to portfolios below a certain threshold, potentially hindering the

ability to generate outperformance. Consequently, for subsequent analysis, we opt to exclude all

AI-labeled funds below a minimum size of five million, as below this threshold, net fund returns

may not be deemed credible, with performance potentially not entirely attributable to fund skill.

However, as a robustness check, we revisit the subsequent analysis, including smaller funds, in

Section 5.

Our primary inquiry centres on whether AI usage furnishes fund managers with an advantage over

counterparts eschewing artificial assistance. As an initial step, we examine the cumulative returns

of such funds and compare them with their respective peers. Figure 2 displays those returns. We

aggregate AI-managed funds into portfolios and compute the respective returns. The left plot delin-

eates the aggregated returns over time (solid line) for an equally weighted portfolio (after deducting

management fees and 12b fees), while the right plot does so in an AuM-weighted manner. With the

dot-dashed line, we compare the returns of the AI portfolios with their matched non-AI peers. Sim-

ilarly, the dotted line represents the market benchmark, defined as the equal- and value-weighed

CRSP stock market portfolio. Examination of the size-weighted outcomes reveals that between

9The smallest AuM reported by CRSP is 0.1, indicating a fund size up to 100,000 USD.
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Figure 1: Distribution AuM & Number of AI-managed funds/portfolios: The left plot depicts the
distribution of the Assets under Management (AuM) across all sub-classes of the AI-managed funds. The
right plot shows the number of AI-managed funds (grey solid line) and unique portfolios (i.e. funds adjusted
for different share classes of the same portfolio; black dashed line) over time. We further consider portfolios
with different portfolio numbers identical if their time-series correlation of daily returns is above 99.9 % and
if they are offered by the same company. For more extensive information on that regard we refer to Appendix
A.

2020 and 2022, AI-managed funds potentially outperformed their fund and market benchmarks.

However, over time, cumulative returns diminish, with performance falling below that of the stock

market portfolio. Yet, the value-weighted portfolio of the AI-managed funds still yields a higher

accumulated performance than the non-AI equivalents. Likewise, the equal-weighted portfolios ex-

hibit a high relevance since the AIEQ makes up to 30% of the AuM of AI-managed portfolios at

certain points in time. Again, the AI-managed funds surpass their conventional analogues. Addi-

tionally, the small AI-managed funds seem to outperform the equal-weighted stock market.

Table 1 delves deeper into these differences in (risk-adjusted) returns. Panel A and B report the

average excess returns for equal and value-weighted AI and rival funds. Since we obtain several

potential rivals for each AI fund, we aggregate them with equal weights (ew) and based on their

relevance with the inverse of the Euclidean distance (dw) to the respective AI fund. One could

interpret these portfolios as fictitious, AI-fund-style mimicking, non-AI counterfactual benchmark

fund. We then aggregate these rival fund portfolios, representing one fund for each AI fund, into

equal-weighted portfolios (Panel A) and value-weighted portfolios (Panel B). The average monthly
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Figure 2: Return over time: We aggregate the AI-managed and the non-AI-managed funds into equal-
and value-weighted portfolios and compute the respective cumulative returns. The left panel represents the
equal-weighted aggregation, and the right is value-weighted. The rival funds were identified using orthogonal
z-scores based on Hoberg et al. (2018). The dotted line represents the CRSP Equal-/Value-Weighted Stock
Market. We require AI-labelled funds to have a minimum fund size of five million. NBER recessions are
shaded in grey.

excess returns over the risk-free rate of the equal-weighted AI-labelled funds in Panel A amount to

71 basis points (bps). On average, AI funds even slightly underperform their peers. Equal-weighted

rival funds yield an average monthly excess return 8.5 bps higher, while distance-weighted rival fund

portfolios generate an average excess performance over AI funds of 9.4 bps. A similar pattern is

observed in Panel B for the value-weighted aggregation of AI and rival funds, with a 32 bps average

monthly excess return for AI funds and 69 bps and 68 bps for equal-/distance-weighted alternatives.

However, a t-test indicates no significance for the average difference. Panel C further investigates

the Sharpe Ratios (SR). Adjusted for risk, AI-labelled funds exhibit smaller returns compared to

conventional funds. The SR of equally-weighted AI funds stands at 0.122 since 10/2017, while non-

AI rivals exhibit SRs of 0.153 for equal-weighted rivals and 0.155 for distance-weighted ones. The

inferior performance of the value-weighted AI fund portfolios in Panel B also results in smaller SRs.

The risk-adjusted return is 0.051, half of what one would obtain with equal weights. Additionally,

the SR difference is larger, with equal and distance-weighted peer funds yielding SRs more than

twice as high as AI funds. A significance test of the SR differences following Ledoit and Wolf (2008)

using the Parzen kernel fails to reject the hypotheses that the SRs differ for all combinations of

equal- and value-weighted AI funds and equal- and distance-weighted connected peer funds. Our
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results align with the previous literature: Zhang et al. (2023) find similar results for the Chinese

Mutual Fund market. Their studied ”Big Data” funds have average Sharpe Ratios 0.123, far below

the 0.208 of the conventional funds benchmark. The average monthly return among those big data

funds is 0.70 %, whereas traditional funds average 1.28 % over the same period.

In Table 2 we explore potential alphas and the loadings of AI funds on factors, interpreted as fund

styles, via several factor regressions based on monthly returns:

rAI
j,t − rft = αj +

K∑
k=1

βj,kfk,t + εj,t, (4)

where rAI
j,t is the return of AI-labelled portfolio j in month t, rft is the risk-free rate and rmt is

the value-weighted market return of CRSP firms. fk,t is the return of zero-investment factor-

mimicking portfolios constructed based on size, book-to-market, operating profitability, invest-

ment and past returns, respectively. We vary K from 1 to 6 and denote these variations as

CAPM, FFC4 and FFC6, when fk,t is
{(

rmt − rft

)}
,
{(

rmt − rft

)
SMBt HMLt MOMt

}
, and{(

rmt − rft

)
SMBt HMLt RMWt CMAt MOMt

}
respectively. Columns (3)-(5) and (8)-

(10) give the results of the regressions for equal and value-weighted portfolios of AI-labelled fund

returns. Most importantly, none of the alphas are significant across all columns, neither for equal-

weighted nor value-weighted AI portfolios. This result blends in with the results of Zhang et al.

(2023), who study big data funds in the Chinese mutual fund market. Their identified big data

funds do not produce any improvements in alphas compared to traditional funds. The reported

average alpha is significantly smaller than those of conventional funds. Columns (4), (9) and (10)

reveal that AI-enhanced funds tilt themselves towards small-sized firms. Furthermore, columns (4)

& (9) and (5) & (10) show that these funds tilt towards growth stocks and weak stocks with low

operating profitability.

Additionally, we regress excess fund returns on excess rival returns, ew and dw,

rAI
j,t − rft = α+ βMKT

j

(
rRv
j,t − rft

)
+ εt, (5)

where rRv
j,t is the aggregated return, ew or dw, of the rival funds of AI fund j at month t. The

results are reported in Table 2, columns (1) & (2) and (6) & (7), respectively. The idea is to see

14



whether AI funds can generate some alpha beyond conventional funds, in the sense that Jensen’s

alpha investigates an outperformance over the market return. Once again, the constants show no

significance, indicating that AI funds fail to generate alpha beyond their matched rival funds. This

finding mirrors those from Table 1.
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Table 1: Performance metrics: We evaluate the performance of AI-enhanced funds compared to matched
rival funds. Suitable rival funds are matched based on the methodology used in Hoberg et al. (2018). For
each AI fund, we construct a portfolio comprising similar rival funds. Subsequently, these rival funds are
aggregated into two distinct portfolios: one employing equal-weighted (ew) methodology, and the other
utilizing distance-weighted (dw) methodology. In the dw approach, weights are determined based on the
inverse of Euclidean distance, assigning higher weights to closer funds and lower weights to less similar ones
within the rival portfolio. Panel A and B present the average excess returns and return differences for both
AI and rival portfolios. We calculate these metrics using both equal-weighted and value-weighted portfolios
of AI funds and their respective rival portfolios. We multiply the returns by 100. Returns, and consequently,
the return differences in columns (4)-(6) are reported in per cent. Panel C displays the Sharpe Ratios (SR)
and their differences. Columns (1)-(4) present SR for portfolios with equal weights, while columns (5)-(8)
consider weights based on the total net assets (TNA) of the constituting funds. Standard Errors for SR
differences are computed following Ledoit and Wolf (2008), based on the prewhitened Parzen kernel.

Panel A: Equal Weighted Returns

rxAI − rxRv

rx se p-val ∆rx se p-val N

(1) (2) (3) (4) (5) (6) (7)

AI funds 0.714 0.745 0.338 62
Rival funds (ew) 0.799 0.662 0.227 −0.085 0.996 0.932 62
Rival funds (dw) 0.808 0.662 0.222 −0.094 0.996 0.925 62

Panel B: Value Weighted Returns

rxAI − rxRv

rx se p-val ∆rx se p-val N

(1) (2) (3) (4) (5) (6) (7)

AI funds 0.320 0.794 0.686 62
Rival funds (ew) 0.691 0.667 0.300 −0.371 1.037 0.721 62
Rival funds (dw) 0.680 0.669 0.310 −0.360 1.038 0.730 62

Panel C: Sharpe Ratios

Equal Weighted Portfolios Value Weighted Portfolios
SR ∆SR se pval SR ∆SR se pval

(1) (2) (3) (4) (5) (6) (7) (8)

AI 0.122 0.051
Rivals (ew) 0.153 −0.032 0.031 0.300 0.132 −0.080 0.050 0.108
Rivals (dw) 0.155 −0.033 0.031 0.276 0.129 −0.078 0.048 0.103
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Table 2: Fama/French/Carhart Factor Regressions: Columns (1)&(2) and (5)&(6) report the coefficients obtained from regressing the excess
returns of AI funds onto the excess returns of equal-weighted and value-weighted portfolios of Rival funds. Rival funds are identified using the
methodology outlined in Hoberg et al., 2018. For each AI fund, we select a minimum of ten similar funds and aggregate them into a portfolio designed
to replicate a counterpart fund with comparable characteristics to the AI funds. This aggregation employs both equal weights (ew) and distance
weights (dw), where we compute weights for dw with the inverse of the Euclidean distance of each rival fund. In columns (3)-(5) and (8)-(10), we
follow the conventional approach of factor regressions, reporting the coefficients obtained from regressing the equal-weighted and value-weighted AI
returns onto the factor returns. Columns (1)-(5) employ equal weights on AI fund returns, while columns (6)-(10) use fund size (TNA) as weights.

Dependent variable:

AI fund returns (ew) AI fund returns (vw)
Rivals (ew) Rivals (dw) CAPM FFC4 FFC6 Rivals (ew) Rivals (dw) CAPM FFC4 FFC6

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

rvex 1.089∗∗∗ 1.116∗∗∗

(0.062) (0.068)

rvvx 1.089∗∗∗ 1.117∗∗∗

(0.060) (0.064)

mkt 1.026∗∗∗ 0.989∗∗∗ 1.026∗∗∗ 1.053∗∗∗ 0.996∗∗∗ 1.053∗∗∗

(0.065) (0.076) (0.077) (0.073) (0.078) (0.049)

smb 0.181∗∗∗ 0.056 0.397∗∗∗ 0.194∗

(0.069) (0.087) (0.117) (0.102)

hml −0.219∗∗∗ −0.187∗∗∗ −0.311∗∗∗ −0.239∗∗∗

(0.043) (0.069) (0.055) (0.066)

rmw −0.267∗∗∗ −0.422∗∗∗

(0.075) (0.101)

cma 0.041 0.020
(0.091) (0.071)

mom −0.021 −0.046 0.026 −0.007
(0.053) (0.052) (0.070) (0.071)

Constant −0.157 −0.166 −0.017 0.008 0.100 −0.452 −0.439 −0.423 −0.379 −0.213
(0.173) (0.181) (0.272) (0.229) (0.176) (0.337) (0.320) (0.390) (0.284) (0.216)

Observations 62 62 64 64 64 62 62 64 64 64
R2 0.936 0.936 0.905 0.931 0.939 0.879 0.887 0.842 0.901 0.917
Adjusted R2 0.935 0.935 0.903 0.927 0.932 0.877 0.885 0.840 0.894 0.909

Note: Newey and West (1994) Standard Errors are in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Given the absence of substantial return differences between AI-enhanced funds and the stock mar-

ket or other funds, as well as the lack of significant alphas, we delve deeper into whether AI may be

more beneficial at the first or second stage of portfolio management. Figure 3, thus, disentangles

the returns reported in Figure 2 into funds that try to exert the power of AI in identifying the

relevant constituents to invest in, and those that employ AI to arrive at a weighting for the previ-

ously selected stocks, bonds, etc. We tag the first group ”Selection” while we refer to the latter as

”Allocation”. Again, the two solid lines represent the performance of the respective AI-optimized

portfolios in the Selection and the Allocation group. The dot-dashed lines represent the matched

rival fund returns. The dotted lines again compare the funds to the aggregated stock market.

The left plot illustrates returns when all funds have identical weights in their respective portfolios,

whereas the right plot weights funds based on their AuM. Only the Selection sub-portfolio with

equal weights manages to outpace the market benchmark. The Allocation AI funds perform even

worse than the sub-portfolio of their rivals. In the value-weighted case, both AI subgroups of funds

do not manage to surpass the stock market. Regardless of that underperformance compared to

the aggregate stock market, these results hint that AI seems to help its fund managers find better

constituents for their portfolios: The AI-Selection portfolios yield higher cumulated returns than

the conventional benchmark funds, especially in the equal-weighted case that gives less weight to

the AIEQ. In addition, the Selection funds accomplish considerably higher returns than the funds

that employ AI in the portfolio optimization stage. These Allocation funds also do not exhibit

considerable excess returns compared to their peers.

Figure 3 suggests that AI might play a beneficial role in pinpointing potentially profitable assets for

portfolio construction. To further explore this we study whether those AI funds demonstrate skill

and effectively utilise it. Pástor et al. (2020) posit that a fund’s excess return, a = µg (T, L), com-

prises a fund-specific constant (µ) representing its skill level, and a measure (g) indicating how ac-

tively the fund applies its skill. Activeness is gauged by turnover (T ) and a liquidity/diversification

metric (L). Activeness increases in turnover T . The rationale is that an active fund has to trade

away from the benchmark to generate returns over its benchmark. Activeness is negatively related

to liquidity L, because mispricing is greater among less-liquid and smaller stocks. We recompute

the fund activeness measure for the funds and then regress fund activeness on the Dummy variable

for AI funds, including time-fixed effects. The results are in columns (1) and (2) of Table 3. AI-

labelled funds tend to be less active than their peers, a trend also observed for funds employing AI
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Figure 3: AI to screen the universe and allocate portfolios: We sort AI-labelled funds into two cate-
gories: The first uses AI to screen the market and establish an investment universe of potentially profitable
constituents. We label this group Selection. The second group of funds employs AI to arrive at desired
portfolio weights. This group has the tag Allocation. The solid lines are the cumulative returns of an equal-
and value-weighted portfolio of those groups of AI funds. The dashed lines are the cumulative returns of the
portfolio of benchmark funds which we again match using orthogonal z-scores based on Hoberg et al. (2018).
The left plot depicts the returns, if all funds have the same weights in their respective portfolios. The right
plot weights the funds based on their AuM. Further information on how we select funds and how we find
appropriate benchmark funds is given in Appendix A. US recessions as dated by the NBER are highlighted
in grey.

in the selection process. In contrast, funds utilizing variations of AI in asset weighting tend to be

more active than conventional funds.

Furthermore, we assess the general skill level of the AI and Non-AI funds using the two measures

motivated in Kacperczyk et al. (2014), Timing and Picking. We explain the measures in Section 2.

Timing evaluates how well a portfolio times its holdings (with over-/underweighting) to the system-

atic component of returns. Picking captures the idiosyncratic part of the portfolio’s holdings. We

compute the betas of the holdings using rolling windows of the previous 12 months. We adopted

a short model where the only explanatory variable is whether or not a fund uses (or advertises

to use) AI and additionally, we added some further covariates. Contrary to other parts of the

previous analysis, we do not from ew or dw portfolios of the set of rival portfolios, but consider

them as they are. We print the results of these regressions in columns (4)-(14) in Table 3. Across

all specifications, AI funds exhibit significantly better timing abilities than their conventional rival

funds. Their over/underweighting creates additional returns between 45 bps in the short regression
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and 28 bps in the long model without the matching variables, compared to their non-AI peers.

Conversely, AI funds significantly underperform their rivals in terms of Picking. Their inferior

picking ability creates negative returns of 58 bps for overall AI-labelled funds in the short model

to 34 bps in the model that includes further explanatory variables without the matching variables.

Separating AI-labelled funds into subgroups based on the presumed stage of AI application yields

similar results. In the short model, the AI portfolios have relatively higher timing ability worth

48 and 38 bps in extra return units. This timing return is, nevertheless, offset by the comparably

worse picking ability of approximately the same size, producing returns of -59 bps and -55 bps on

average. These results continue to hold if we again add further explanatory variables, though the

effect size is smaller. Timing is positive for the subgroups of AI portfolios with 25 and 41 bps of

return while picking cancels these returns out with -36 and -43 bps, relative to the matched rivals.

These results are opposite to those reported in Chen and Ren (2022), which find relative picking

ability and no significant difference in timing ability. However, the significance of the picking ability

is low, indicating that extending the time series and cross-section with new AI-managed funds may

improve the power of tests, providing a clearer picture of AI-labelled fund skill levels.
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Table 3: Activeness and Skill: We run Fixed Effects Regressions with fixed time effects to examine the impact of AI funds on activeness and skill.
We employ a dummy variable indicating the use of AI at any stage of portfolio management as the explanatory variable. Additionally, we disaggregate
this AI dummy into two distinct stages: AI employed in the stock selection process and AI utilized in determining the weighting scheme. The Activeness
measure, as proposed in Pástor et al. (2020), is defined as Activeness = TL−1/2, where T represents fund turnover and L denotes a measure of portfolio

liquidity. Skill is assessed through Timing and Picking metrics as outlined in Kacperczyk et al. (2014): Timingjt =
∑Nj

i=1

(
wj

i,t − wm
it

) (
βi,tR

m
t+1

)
and

Pickingjt =
∑Nj

i=1

(
wj

i,t − wm
it

) (
Ri

t+1 − βi,tR
m
t+1

)
. For the abbreviated models, we include only a dummy variable for AI as the explanatory factor.

We incorporate two sets of additional covariates: one where matching variables used to identify rival funds are excluded, and another where these
variables are included. Standard Errors are clustered following Arellano (1987).

Dependent variable:

Fund Activeness Timing Picking
Short Model Short Model Short Model Short Model Long w/o MV Long w/o MV Long Model Long Model Short Model Short Model Long w/o MV Long w/o MV Long Model Long Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

ai fund −5.4700∗∗∗ 0.0045∗∗∗ 0.0028∗∗∗ 0.0033∗∗∗ −0.0058∗∗∗ −0.0034∗ −0.0038∗∗

(2.1005) (0.0007) (0.0009) (0.0009) (0.0015) (0.0018) (0.0016)

ai in stock sel −9.1556∗∗∗ 0.0048∗∗∗ 0.0025∗∗ 0.0028∗∗∗ −0.0059∗∗∗ −0.0034 −0.0036∗

(1.6843) (0.0009) (0.0011) (0.0010) (0.0020) (0.0022) (0.0020)

quant strat 7.9256∗ 0.0038∗∗∗ 0.0041∗∗∗ 0.0050∗∗∗ −0.0055∗∗∗ −0.0033∗ −0.0043∗∗

(4.0933) (0.0010) (0.0015) (0.0015) (0.0015) (0.0020) (0.0021)

port lme −0.0024∗∗∗ −0.0024∗∗∗ 0.0018∗∗∗ 0.0018∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

port lbm −0.0041∗∗∗ −0.0041∗∗∗ −0.0065∗∗∗ −0.0065∗∗∗ 0.0008∗∗∗ 0.0008∗∗∗ 0.0026∗∗∗ 0.0026∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002) (0.0002)

port lmom −0.0007 −0.0007 0.0037∗∗∗ 0.0037∗∗∗

(0.0008) (0.0008) (0.0007) (0.0007)

port ldy 0.0010∗∗∗ 0.0010∗∗∗ −0.0003∗ −0.0003∗

(0.0002) (0.0002) (0.0002) (0.0002)

lage 0.0006∗∗∗ 0.0006∗∗∗ 0.0007∗∗∗ 0.0007∗∗∗ 0.00002 0.00002 −0.0001 −0.0001
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

exp ratio 0.0157 0.0156 −0.0068 −0.0069 −0.0345∗ −0.0346∗ −0.0103 −0.0103
(0.0262) (0.0262) (0.0247) (0.0247) (0.0180) (0.0180) (0.0170) (0.0170)

turn ratio −0.0001 −0.0001 −0.0001 −0.0001 −0.0001 −0.0001 −0.0001 −0.0001
(0.0001) (0.0001) (0.0001) (0.0001) (0.00005) (0.00005) (0.0001) (0.0001)

Observations 151,456 151,456 485,137 485,137 217,707 217,707 212,512 212,512 485,137 485,137 217,707 217,707 212,512 212,512
R2 0.00005 0.0001 0.0001 0.0001 0.0037 0.0037 0.0151 0.0151 0.0002 0.0002 0.0003 0.0003 0.0083 0.0083
Adjusted R2 −0.0002 −0.0002 −0.0001 −0.0001 0.0034 0.0034 0.0147 0.0147 0.0001 0.0001 −0.00003 −0.00004 0.0080 0.0080

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4 Persistence and Fund Flows

We follow the classical approach put forward by Carhart (1997) to asses the persistence of AI

returns. Given the limited number of AI funds, we categorize them into terciles based on the

previous month’s returns of all funds (including also those funds that are neither AI funds nor rival

funds), as opposed to deciles. We then hold the sorts constant for the next period (month, quarter

or semester10) and compute the returns of equally weighted portfolios of each tercile. This process

is repeated, rolling forward until the beginning of the next holding period, yielding a time series of

non-overlapping returns for tercile portfolios. Additionally, we evaluate the performance of a zero-

investment portfolio that takes long positions in the top-performing tercile and short positions in

the bottom-performing tercile. We assess the persistence of the equally weighted tercile portfolios

by regressing their excess returns onto K factors:

rtc,t − rft = αtc +
K∑
k=1

βtc,kfk,t + εtc,t, (6)

where rtc,t is the return of the tercile portfolio or a zero-investment portfolio constructed solely

with AI funds or rival funds, respectively and rft is the risk-free rate. Similar to Equation 4, we

vary the number of factor-mimicking portfolios, K, in ft,k.

Busse et al. (2010) conducted similar factor regressions for all U.S. funds and identfied a reversal

in the performance of poorly-performing funds and momentum in well-performing funds. Panel

A, B and C in Table 4 report the intercepts from the corresponding CAPM, four-factor (FFC4)

and six-factor (FFC6) regressions. Columns (1)-(3) are the alphas from sub-sampling solely on AI

funds, and columns (4)-(6) filter on rival funds. Throughout both groups, AI and rival funds, and

for all variations of considered factors, we observe that the bottom and mid-performing funds yield

subsequent significant negative alphas. This finding also holds for all investigated holding periods.

This means that, contrary to the results in the overall fund sample of Busse et al. (2010), bad

performance on average persists for at least the following six months.

Concerning the top tercile, previous findings of Carhart (1997) and Busse et al. (2010) suggest pos-

itive momentum in fund returns. However, for AI funds we only observe positive future semester

10We refrain from investigating persistence over the next year or successive years due to the constraints of our
sample, as outlined in Section 2. Our sample is restricted by the inception of the first AI fund in 2017, resulting in a
limited number of observations. In the case of FFC6, this would entail K > T .
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alphas within the FFC4 regressions and positive subsequent monthly alphas with six factors. The

remaining intercepts of AI-labelled funds are not significant. For the rival funds, we even observe

the opposite. The significant intercepts, all at 1Q and 1S horizons exhibit a negative sign, indicat-

ing short-term reversal rather than momentum.

In the model of Farboodi and Veldkamp (2020), higher computational power enables funds to pro-

cess more information simultaneously, enhancing price informativeness. However, this can lead to

diminishing returns as all market participants react to the same information, resulting in a scenario

where assets are bought uniformly. As a result, the increasing amount of inflows towards these as-

sets will create upward price pressures towards them. Similarly, Gabaix and Koijen (2022) find that

price elasticities in the equity market are small, indicating that flows in and out of the market exert

significant price pressure on stocks experiencing substantial flows. The magnitude of this effect is

noteworthy, with a $ 1 inflow generating a five-fold impact on the aggregate market. Additionally,

findings by Pástor et al. (2021) and Pástor et al. (2022) argue that although green firms typically

have low expected returns, they tend to outperform following positive demand for the ESG factor.

Moreover, Beck (2021) examines ESG returns at the fund level. Even though ESG funds should

not outperform the market, the flow-driven return of such funds is 2.07%. Therefore, we hypothe-

size that the inelasticity of demand could - analogous to ESG funds - be viable for AI-labelled funds.

To explore this further, we examine the impact of inflows and outflows on the identified AI funds.

We suspect that this effect is particularly relevant for larger funds, given their greater visibility to

public investors compared to smaller funds. Figure 4 plots the cumulative returns of the top 50 %

of AI-labelled funds. The first prominent observation is that the aggregate returns are much larger

for the big funds, compared to the cumulative returns in Figure 2. Particularly, the equal-weighted

portfolio (shown in the left plot with a solid line) yields higher returns than the equal-weighted mar-

ket portfolio. This might The poorer performance of the value-weighted equivalent is attributable

to the performance of the AIEQ, which at some points constitutes up to 30 % of the aggregate.

The availability of data on fund flows is scarce in the CRSP dataset. In addition, we due to the

change in the filing system, the numbers are not comparable. To obtain more reliable data, we

proxy fund flows via the change in TNA, corrected for internal portfolio growth and dividends:

23



Table 4: Persistence of alphas: We asses the persistence of returns following Carhart (1997): At the
beginning of each month, quarter or semester, we sort each fund portfolio into terciles based on their past-
month return. We then aggregate the returns to equally-weighted tercile portfolios. Additionally, we compute
returns for a portfolio with a long position in the top tercile and a short position in the bottom portfolio. We
re-balance the portfolios at the start of each holding period, meaning monthly, quarterly or half-annually.
The table reports the alphas from factor regressions on these portfolio returns. 1M - next month, 1Q - next
quarter, 1S - next semester. Newey and West (1994) Standard Errors are in parentheses.

Panel A: CAPM

AI Rivals
1M 1Q 1S 1M 1Q 1S
(1) (2) (3) (4) (5) (6)

1 -0.0091∗∗∗ -0.0151∗∗ -0.0317 -0.0041∗∗ -0.0045 -0.0327∗∗∗

(0.0032) (0.0075) (0.0289) (0.0019) (0.0051) (0.0074)
2 -0.0043 -0.0237∗∗∗ -0.0247∗∗ -0.0019∗ -0.0098∗∗∗ -0.0188∗∗∗

(0.0027) (0.0055) (0.0125) (0.0011) (0.0021) (0.0038)
3 0.0024 -0.008 0.0092 -0.0015 -0.0108∗∗∗ -0.0071

(0.0034) (0.0074) (0.0198) (0.0021) (0.0037) (0.009)
3-1 0.0105∗∗∗ 0.0044 0.0424 0.0016 -0.0098 0.0276∗

(0.004) (0.0122) (0.0313) (0.0035) (0.0075) (0.0156)

Panel B: FFC4

AI Rivals
1M 1Q 1S 1M 1Q 1S
(1) (2) (3) (4) (5) (6)

1 -0.0083∗∗∗ -0.0084 -0.0178 -0.0039∗∗ -0.0028 -0.0497∗∗∗

(0.0029) (0.0056) (0.0195) (0.002) (0.0046) (0.0044)
2 -0.0039 -0.0245∗∗∗ -0.0135∗ -0.0017∗∗ -0.0105∗∗ -0.0161∗∗∗

(0.0028) (0.0066) (0.008) -8,00E-04 (0.0053) (0.0034)
3 0.0027 -0.0048 0.0579∗∗∗ -0.0013 -0.0124∗∗ 0.0013

(0.0028) (0.0064) (0.0213) (0.0025) (0.0054) (0.008)
3-1 0.01∗∗ 0.0019 0.081∗∗ 0.0017 -0.013∗∗∗ 0.0599∗∗∗

(0.0044) (0.009) (0.0351) (0.004) (0.0043) (0.0131)

Panel C: FFC6

AI Rivals
1M 1Q 1S 1M 1Q 1S
(1) (2) (3) (4) (5) (6)

1 -0.0071∗∗ -0.0115∗ 0.0316∗∗∗ -0.0035∗ -0.0052 -0.016
(0.0029) (0.0061) (0.01) (0.0019) (0.0067) (0.0163)

2 -0.0041 -0.0276∗∗∗ 0.0129∗∗∗ -0.0021∗∗∗ -0.0112∗∗∗ -0.0098∗∗∗

(0.0032) (0.0037) (0.0024) -8,00E-04 (0.0025) (0.0014)
3 0.0031 -0.0048 -0.003 -0.0022 -0.0107∗∗ -0.0297∗∗∗

(0.0028) (0.0063) (0.0049) (0.0025) (0.0045) (0.0055)
3-1 0.0092∗∗ 0.0048 -0.0335 4,00E-04 -0.0089∗∗∗ -0.0062

(0.0042) (0.0111) (0.031) (0.0038) (0.003) (0.0714)
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Figure 4: Top 50 % (TNA) AI funds, cumulative returns: We compute the cumulative returns for
AI-labelled funds, same as for Figure 2 for the funds with the largest 50 % (measured in TNA) AI-labelled
funds. The solid line depicts the returns of an equal and value-weighted portfolio of AI funds respectively.
The dash-dotted line is the portfolio of rival funds, matched adapting the methodology in Hoberg et al.
(2018). A detailed description is in Section 2. The dotted line represents the cumulative returns of CRSP
equity market portfolios. The grey shaded area are recessions as reported by NBER.

flowabs
j,t = NAVj,t −NAVj,t−1 ∗ (1 + rj,t) (7a)

flowrel
j,t =

NAVj,t −NAVj,t−1 ∗ (1 + rj,t)

NAVj,t−1
, (7b)

where NAVj,t is the aggregated net asset value of portfolio j at time t and (1 + rj,t) denotes the

investment-weighted portfolio returns of portfolio j from time t − 1 to t. Berk and Tonks (2007)

argue that Equation 7b does not correctly capture the relative in- or outflow towards funds. The

authors argue that this computation does not perfectly control the change of flows for internal

growth. Alternatively, they propose the following measure for relative fund flows

flowrel,BT07
j,t =

NAVj,t −NAVj,t−1 ∗ (1 + rj,t)

NAVj,t−1 ∗ (1 + rj,t)
(7c)

To analyse the implications of fund flows into AI and rival funds, we conduct fixed effects regres-

sions with three types of regressors: a short model with a dummy variable for AI funds as the sole

explanatory variable, one resembling the specifications of Miguel and Chen (2021), and a longer one
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where we include additional explanatory variables. The corresponding results are printed in Table

5. Contrary to Miguel and Chen (2021), we do not find robust evidence for a strong sensitivity

of AI or rival fund flows to past returns. Although past-month performance exhibits significance

and a positive coefficient in the long models (columns (3), (6), and (9)), the dummies indicating

whether a portfolio was in the top or bottom tercile of fund returns remain largely insignificant

across most model specifications. Only in column (2) does the dummy representing past perfor-

mance in the lowest tercile show significance, albeit with a positive coefficient. This finding appears

counterintuitive, especially considering the positive and significant past four-factor alpha. Such a

result would imply that poorly performing funds (in the bottom tercile) and well-performing ones

(with higher alphas) receive positive absolute inflows, which seems paradoxical. In favour of the

idea would on the other hand be that both, past timing and past picking skill, are significant and

positive for all three measurements of fund flows. Moreover, for absolute flows, past alpha is sig-

nificant, positive and high for both specifications in which it is considered. Nonetheless, the AI

dummy variable proves to be irrelevant in all but one model, indicating that the utilization of AI

is not a determinant for future fund flows. Consequently, the results suggest that AI funds are not

as strongly influenced by fund flows as ESG funds.

5 Further Analyses and Robustness

So far, we have restricted our analysis by several assumptions. However, these design choices might

be influential for the subsequent results. Below, we, therefore, investigate the robustness of our

results towards some alternations in the analysis.

5.1 Keep tiny funds

For the main analysis, we removed all funds with a fund size below five million. Appendix B repeats

the analysis including those tiny funds and presents the results. We find that the results are similar

to the main analysis, though AI-labelled funds now perform slightly worse but still not significantly

worse than their non-AI peers.
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Table 5: Fund flows: We run Fixed Effects Regressions with fixed time effects to investigate flows towards
funds. In the short model, we only include a dummy for AI funds. In the second specification, we further
the variables used in Miguel and Chen (2021): That includes two further dummy variables that are one if
the past performance was in the top or bottom tercile of all funds respectively. Furthermore, we include past
performance, past alphas from a four-factor regression and the prevalent standard deviation of the fund-
specific flow computed with rolling regressions. The last specification adds additional fund-specific control
variables. In the table, we abbreviate Berk and Tonks (2007) with BT07. Standard Errors are clustered
following Arellano (1987).

Dependent variable:

fund flows (abs) fund flows (rel) fund flows (rel) BT07
Short Model Middle Model Long Model Short Model Middle Model Long Model Short Model Middle Model Long Model

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ai fund 0.385 0.324 −17.023∗∗∗ 0.007 −0.004 0.008 0.006 −0.005 0.005
(0.757) (0.834) (4.201) (0.011) (0.009) (0.014) (0.011) (0.009) (0.013)

d bot perf l1 4.716∗∗∗ −4.647 0.042 −0.001 0.041 −0.001
(1.698) (5.233) (0.037) (0.005) (0.036) (0.004)

mretal1 8.980 113.176∗∗∗ −0.428 0.216∗∗∗ −0.450 0.223∗∗∗

(12.966) (22.120) (0.441) (0.071) (0.436) (0.072)

d top perf l1 −0.205 2.247 −0.023 0.002 −0.023 0.002
(1.420) (4.818) (0.032) (0.004) (0.032) (0.004)

alphal1 156.294∗∗ 670.653∗∗∗ 1.019 0.290 1.039 0.241
(61.867) (158.604) (1.103) (0.201) (1.089) (0.206)

sd flow abs l1 −0.101∗∗∗

(0.018)

sd flow rel l1 0.001
(0.002)

sd flow rel BT l1 0.001
(0.002)

fa l1 0.058∗∗ 0.00003 0.00003
(0.026) (0.00003) (0.00003)

tmg l1 135.743∗∗ 0.150∗∗∗ 0.146∗∗∗

(54.078) (0.055) (0.054)

pkg l1 201.034∗∗∗ 0.355∗∗∗ 0.331∗∗∗

(39.758) (0.068) (0.066)

lage l1 −4.907 −0.013∗∗∗ −0.013∗∗∗

(3.354) (0.002) (0.002)

exp ratio l1 −3,071.852∗∗∗ −0.180 −0.208
(992.097) (0.337) (0.332)

turn ratio l1 0.110 0.003 0.003
(0.222) (0.002) (0.002)

port lme l1 1.326 −0.001 −0.0005
(1.378) (0.002) (0.002)

port lbm l1 1.693 0.005 0.004
(3.233) (0.004) (0.004)

port lmom l1 1.986 0.041∗∗ 0.040∗∗

(6.178) (0.017) (0.017)

port ldy l1 1.256 −0.005 −0.005
(1.946) (0.003) (0.003)

Observations 732,794 655,206 130,422 732,794 655,206 130,422 732,794 655,206 130,422
R2 0.000 0.00001 0.017 0.000 0.00000 0.001 0.000 0.00001 0.001
Adjusted R2 −0.0001 −0.0001 0.017 −0.0001 −0.0001 0.001 −0.0001 −0.0001 0.001

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5.2 Drop orthogonalization and z-scores

The analysis’ results rely heavily on the choice of the rival funds. Especially the orthogonalization

of the z-scores puts a lot of emphasis on the order of the variables in the characteristics vector

Cf,t. Matching variables that are placed in the first elements of the vector receive much higher

importance than those which are in the latter elements of the matching vector. We, therefore,

re-match the rival funds based on z-score without orthogonalization. We abbreviate these results

with zs. Alternatively, instead of using z-scores, we use the ranks in the Cf,t vector. We construct

ranks, following the first matching methodology of Hoberg et al. (2018), as the percentile of a

stock’s characteristic in the distribution of all NYSE stocks with share code 11 or 12. We then

aggregate the ranks of all stock holdings at the portfolio level using the relative portfolio weights

of the constituents. pcrk flag all results based on these percentile ranks throughout this paper.

Figure 5 plots the analogous returns to Figure 2 but with alternative rival funds, matched without

orthogonalizing either ranks or z-scores. Panel A shows results computed based on ranking the

variables. Panel B depicts the respective plot based on z-scores instead. The solid lines represent

the funds relying on AI, whereas the dash-dotted lines depict the non-AI peers. A grey line indi-

cates an aggregation where each portfolio receives an equal weight, a black line on the other hand

aggregates relative to the value managed within the respective portfolio. Comparing the results

between ranks and z-scores, we see no substantial differences. The graphs paint a very similar im-

age. Similar to the rival funds from the main analysis, the AI-managed funds perform better than

their peers in the beginning. However, depending on the set of matching variables the performance

of the AI-labelled funds deteriorates in the second half of the observation period. In some cases

even substantially. We, further, observe that the result varies across the set of variables used to

match the funds. Therefore, we conclude that while z-scores or ranks do not greatly affect the set

of rivals, the orthogonalization and the set of variables in the matching vector might play a role in

matching though.

5.3 Alternative variables

From the results in Figure 5 we concluded that the set of variables in the matching vector might

play a substantial role in finding benchmark funds for the investigated AI funds. One could, for in-
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Figure 5: Return over time using alternative variables to match rival funds: We use the same
methodology as previously to match (portfolios of) rival funds. However, this time we drop orthogo-
nalization and use both, ranks (pcrk) and z-scores (zs). Furthermore, we use alternative variables in
Cf,t. For HKP18, we adopt CHPK18

f,t =
(
lme lbm lmom ldy

)
, for alt1, Calt1

f,t =
(
lme fa lbm

)
,

alt2 uses Calt2
f,t =

(
lage ltnr lep

)
, and all combines all previous variables and adds one extra Call

f,t =(
lme lbm lmom ldy lage fa lep ltnr lexr

)
, where lme is the log size, lbm is log book-to-market,

lmom is log momentum, ldy is log dividend yield, lage is the log fund age in years, fa represents a measure
of fund activeness, lep is log earings/price, ltnr is the log turnover ratio, and lexr is the log of reported
expense ratio. Grey lines indicate equal weights in portfolios, black lines use market weights. Solid lines
represent AI funds, dot-dashed lines depict rival funds. Periods of recessions (as reported by NBER) are
shaded in grey.
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stance, argue that momentum as a matching variable may lead to a self-fulfilling prophecy of similar

subsequent fund returns. We, therefore, alter the variables in the Cf,t vector. HKP18 adopts the

variables used in the 4D network of Hoberg et al. (2018), namely log size, log book-to-market ratio,

log past returns and log dividend yield. alt1 picks up the argument from before and replaces the

momentum characteristic from the main analysis with fund activeness. alt2 tries to find alterna-

tives for all three variables from the main analysis. Fund age replaces size, as longer existing funds

should also have a higher TNA. Log turnover poses the alternative to momentum, following the

idea of fund activeness in Pástor et al. (2020) that one has to trade away from a given benchmark

to create outperformance, leading to positive momentum. The log earings-to-price ratio is used as

an alternative multiple for valuation. Furthermore, earnings should sooner or later transform into

cash dividends, which would lead us back to the dividend yield. Finally, all combines all previously

mentioned variables into the spacial basis. The graphs in Figure 5 show that while the cumulative

returns for HPK18 are similar to our baseline model in the main analysis, the cumulative returns

of the other alternatives are much worse than for their benchmarks in the second half of the in-

vestigated period. These results are similar for equal and value weights. However, equal weights

perform better than value weights, further indicating that AIEQ receives too much weight and

returns yields below its rivals.

6 Conclusion

We evaluate funds that claim to enhance their portfolio management through the implementation of

AI and related methods, such as machine learning or deep learning. In summary, funds labelled as

AI-driven perform comparably to non-AI funds, showing neither significantly superior nor inferior

performance. However, they still underperform in comparison to the market portfolio. When com-

pared to traditional funds, AI-driven funds demonstrate lower activity levels and exhibit greater

timing ability. However, their stock selection skills fall short when compared to their counterparts.

Additionally, our findings reveal persistent negative performance in both, AI and rival funds, with

weak evidence towards momentum in well-performing AI funds and reversal for rival funds.

Although our sample contains more data than the analysis conducted by Chen and Ren (2022),

which closely aligns with ours, our data availability remains limited. The integration of AI into
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portfolio management processes began in 2017 and is therefore relatively recent. In the coming

years, with more return observations and a greater number of AI funds in the cross-section, more

conclusive findings are likely to be drawn. Future research could also add the CSMAR and RES-

SET databases to the analysis and broaden the scope of analysis from U.S. to Chinese mutual funds.

31



References

Arellano, M. (1987). “Computing Robust Standard Errors for Within-Groups Estimators”. In:

Oxford Bulletin of Economics and Statistics 49.4, pp. 431–434.

Avramov, D., S. Cheng, and L. Metzker (2023). “Machine Learning vs. Economic Restrictions:

Evidence from Stock Return Predictability”. In: Management Science 69.5, pp. 2587–2619.

Azevedo, V., C. Hoegner, and M. Velikov (2023a). “The Expected Returns on Machine-Learning

Strategies”. In: Available at SSRN 4702406.

Azevedo, V., G. S. Kaiser, and S. Mueller (2023b). “Stock Market Anomalies and Machine Learning

Across the Globe.” In: Journal of Asset Management 24, pp. 419–441.

Barras, L., O. Scaillet, and R. Wermers (2010). “False Discoveries in Mutual Fund Performance:

Measuring Luck in Estimated Alphas”. In: Journal of Finance 65.1, pp. 179–216.

Beck, P. van der (2021). “Flow-driven ESG returns”. In: Swiss Finance Institute Research Paper

21–71. Available at SSRN: https://ssrn.com/abstract=3929359.

Begenau, J., M. Farboodi, and L. Veldkamp (2018). “Big data in Finance and the Growth of Large

Firms”. In: Journal of Monetary Economics 97, pp. 71–87.

Berk, J. B. and I. Tonks (2007). “Return Persistence and Fund Flows in the Worst Performing

Mutual Funds”. NBER Working Paper 13042.

Berk, J. B. and J. H. Van Binsbergen (2015). “Measuring Skill in the Mutual Fund Industry”. In:

Journal of Financial Economics 118.1, pp. 1–20.

Busse, J. A., A. Goyal, and S. Wahal (2010). “Performance and Persistence in Institutional Invest-

ment Management”. In: Journal of Finance 65.2, pp. 765–790.

Carhart, M. M. (1997). “On Persistence in Mutual Fund Performance”. In: Journal of Finance

52.1, pp. 57–82.

Chen, A. Y. and M. Velikov (2023). “Zeroing in on the Expected Returns of Anomalies”. In: Journal

of Financial and Quantitative Analysis 58.3, pp. 968–1004.

Chen, L., M. Pelger, and J. Zhu (2024). “Deep Learning in Asset Pricing”. In: Management Science

70.2, pp. 714–750.

Chen, R. and J. Ren (2022). “Do AI-powered Mutual Funds Perform Better?” In: Finance Research

Letters 47, p. 102616.

Chinco, A., A. D. Clark-Joseph, and M. Ye (2019). “Sparse Signals in the Cross-Section of Returns”.

In: Journal of Finance 74.1, pp. 449–492.

32



Chordia, T., A. Subrahmanyam, and Q. Tong (2014). “Have Capital Market Anomalies Attenuated

in the Recent Era of High Liquidity and Trading Activity?” In: Journal of Accounting and

Economics 58.1, pp. 41–58.

Cong, L. W., K. Tang, J. Wang, and Y. Zhang (2021). “AlphaPortfolio: Direct Construction

Through Deep Reinforcement Learning and Interpretable AI”. In: Available at SSRN 3554486.

Dugast, J. and T. Foucault (2018). “Data Abundance and Asset Price Informativeness”. In: Journal

of Financial Economics 130.2, pp. 367–391.

Farboodi, M. and L. Veldkamp (2020). “Long-Run Growth of Financial Data Technology”. In:

American Economic Review 110.8, pp. 2485–2523.

Freyberger, J., A. Neuhierl, and M. Weber (2020). “Dissecting Characteristics Nonparametrically”.

In: Review of Financial Studies 33.5, pp. 2326–2377.

Gabaix, X. and R. S. J. Koijen (2022). “In Search of the Origins of Financial Fluctuations: The

Inelastic Markets Hypothesis”. Swiss Finance Institute Research Paper No. 20-91, Available at

SSRN: https://ssrn.com/abstract=3686935.

Grennan, J. and R. Michaely (2021). “Fintechs and the Market for Financial Analysis”. In: Journal

of Financial and Quantitative Analysis 56.6, pp. 1877–1907.

Gu, S., B. Kelly, and D. Xiu (2020). “Empirical Asset Pricing via Machine Learning”. In: Review

of Financial Studies 33.5, pp. 2223–2273.

Hoberg, G., N. Kumar, and N. Prabhala (2018). “Mutual Fund Competition, Managerial Skill, and

Alpha Persistence”. In: Review of Financial Studies 31.5, pp. 1896–1929.

Kacperczyk, M., S. V. Nieuwerburgh, and L. Veldkamp (2014). “Time-varying Fund Manager Skill”.

In: Journal of Finance 69.4, pp. 1455–1484.

Kelly, B., S. Malamud, and K. Zhou (2024). “The virtue of Complexity in Return Prediction”. In:

Journal of Finance 79.1, pp. 459–503.

Ledoit, O. and M. Wolf (2008). “Robust Performance Hypothesis Testing with the Sharpe Ratio”.

In: Journal of Empirical Finance 15.5, pp. 850–859.

Linnainmaa, J. T., B. T. Melzer, and A. Previtero (2021). “The Misguided Beliefs of Financial

Advisors”. In: Journal of Finance 76.2, pp. 587–621.

Martin, I. W. and S. Nagel (2022). “Market Efficiency in the Age of Big Data”. In: Journal of

Financial Economics 145.1, pp. 154–177.

McLean, R. D. and J. Pontiff (2016). “Does Academic Research Destroy Stock Return Predictabil-

ity?” In: Journal of Finance 71.1, pp. 5–32.

33



Miguel, A. F. and Y. Chen (2021). “Do Machines Beat Humans? Evidence from Mutual Fund

Performance Persistence”. In: International Review of Financial Analysis 78, p. 101913.

Newey, W. K. and K. D. West (1994). “Automatic Lag Selection in Covariance Matrix Estimation”.

In: Review of Economic Studies 61.4, pp. 631–653.
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A Identifying AI(-labelled) funds

At the heart of our study lies the identification of funds that feature some sort of artificial intel-

ligence (AI) in the portfolio construction process. To achieve this classification, we rely on the

Summary Prospectus Type 497K which we obtain from the Securities and Exchange Commission’s

(SEC’s) Electronic Data Gathering, Analysis, and Retrieval (EDGAR) filing system. Chen and

Ren (2022) report that the first AI-managed fund was the ETF Managers Trust: AI Powered

Equity ETF (AIEQ)11. It was issued on 19/10/2017. They find 15 AI-managed funds until the

end of 2019. We, therefore, adopt their identified funds and start the construction of our dataset

from 2020 forward. We download the Summary Prospectus Type 497K for all CIK starting from

2019. In total, we download filings for 35,887 funds from the beginning of 2019 until the end of

2022. We subsequently apply a number of filters. Table A1 outlines this process of arriving from

all fund filings to the final identified AI-managed funds. In the first step, we search for AI-related

keywords in the filings. Out of the 35,887 funds, 318 contain any of the keywords in their filings.

However, most of these ”hits” are misleading. The Summary Prospectus also contains information

for instance about the fund manager. If they have a master’s degree in ”Machine learning”, this

has nothing to do with the fund itself or how the fund is being managed. To give another example

of such non-intended hits, many funds are AI-sector funds and somehow contain variations of our

search-words in their title or fund description. Nevertheless, we are not interested in funds that

invest in companies that predominantly operate within or prominently focus their R&D on AI.

We are keen on solely finding those funds with AI in their portfolio management and optimization

process. Therefore, we review the descriptions of the remaining filings manually and decide whether

or not - given the information in the Summary Prospectus - the fund uses AI in some stage of the

portfolio construction. In this step, we also classify whether a fund uses AI in the step of selecting

the investable universe or whether AI is used in the stage of computing a suitable weighting. This

leaves us with 93 funds that use AI at some stage of the asset management process to come up

with a portfolio. Given that the filings are identified by the company’s CIK, we merge the list

of identified funds with the CRSP Survivor-Bias-Free U.S. Mutual Fund Database. However, we

encounter 12 funds without matching CIKs in the CRSP database, resulting in a final sample of 81

funds.

11CUSIP: 26924G813
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Table A1: Selecting Criteria to identify AI-managed funds: We obtain Summary Prospectus 497K
from EDGAR. Panel A shows the filters that we use to identify which of them only use AI keywords in
their name or descriptions, which of them only invest in companies that operate predominantly in AI and
which funds use AI somewhere along their investment process. Panel B reports the number of matches in
the filings that we obtain with our keywords.

Panel A: Selecting Funds N Panel B: Used Keywords in Step 1 N
Number of screened funds 35887 Natural Language Processing 31
Filtering Step 1: Artificial Intelligence 25
Fund Filing contains AI keywords 318 Machine Learning 25
Filtering Step 2: AI 6
Fund uses AI at some stage of
their investment process

93 AI-enhanced 4

Filtering Step 3: Deep Learning 4
Fund has a connected
CRSP Portfolio Number

81 AI powered 2

Filtering Step 4: Neural Networks 2
Account for subclasses of funds 70 Cluster Analysis 1

Pástor et al. (2015) note that many mutual funds hold the same portfolio. These funds represent

different share classes with different fee structures. We aggregate sub-classes of the same fund in

two ways. First, we connect funds, if they share the same portfolio number. Pástor et al. (2015)

already mention that many mutual funds offer multiple share classes, which in reality only represent

a claim onto the same underlying portfolio. These funds then carry different fund identifiers, but

the same portfolio identifier. Where possible, we, therefore, run our analysis based on portfolio

level rather than fund level. A mutual fund that offers the same portfolio with multiple fee struc-

tures would otherwise then lead to multiple versions of the same portfolio, which in turn would

result in a higher weight for that specific portfolio in the aggregate analysis. This step already

finds most of these connected funds. However, there are still some unmatched funds left. For

example, CRSP Portno 1023744 (Voya Small Company Fund) and 1024790 (Voya Small Company

Portfolio) hold a close to similar portfolio. We link these remaining funds based on correlation.

If the time-series correlation of daily returns between two funds is above 99.9 % and if they are

issued by the same company, we consider them the same portfolio. We require at least 252 days of

pairwise complete observations for the correlations. In this fourth filtering step, we reduce our sam-

ple to 70 unique portfolios that are managed entirely or in part with the use of artificial intelligence.

We want to highlight again that this methodology has a major drawback: As already discussed in

Section 1 and 2 this procedure of identifying AI-managed funds is rather a way to identify ”AI-
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managed”-labelled funds. Both interpretations would actually be to some extent true. On the one

hand, we do identify funds that intend to enhance their portfolio management process through

the application of AI, ML, and DL. On the other hand, we miss out on those funds that do not

mention that they apply AI. Furthermore, some keywords are ambiguous: Some funds claim to

do ”statistical analysis”, others report applying ”quantitative methods” without providing further

insights into what this analysis specifically includes or which methods they use. Since we only

keep those portfolios with unambiguous cases, we have to drop all those and lose out on several

potentially AI-applying portfolios. Throughout the paper we use the two terms ”AI-labelled” and

”AI-enhanced” or ”AI managed” interchangeably and leave the decision on how to coin the inter-

pretation to the reader.

For the benchmark funds we then match funds in the CRSP Survivor-Bias-Free U.S. Mutual Fund

Database based on their fund characteristics. Contrary to the datasets of previous research (c.f.

e.g. Berk and Van Binsbergen, 2015 or Pástor et al., 2015), we keep ETFs, sector and index funds

in the dataset. Most AI-managed funds are offered through the fund construct of ETFs or use AI

methods, such as NLP, to identify the investment universe for an improved version of a predefined

sector fund - filtering them would eliminate potential (suitable) benchmark funds.

B Repeat analysis including tiny funds

We re-conduct the analysis from Section 3 without removing funds with TNA below 5 million from

our sample. Figure A1 draws the cumulative returns, as we do in Figure 2 in the main analysis.

The results are very similar to the ones where we eliminate the tiny funds. Equally-weighted AI

funds and their conventional fund benchmark outpace the market benchmark. Value-weighted, the

graph shows close to no alteration to the original plot, as the tiny funds receive close to no weight

anyway. Nevertheless, the tiny funds do alter the results in Figure A2. While the Selection sub-

portfolio exhibited returns close to the ew market portfolio, the tiny funds that use AI to screen for

investment opportunities seem to deteriorate the performance. Again, the value-weighted graph

does not alter substantially, due to the small weights assigned to the newly included small funds.
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Figure A1: Return over time incl. tiny funds: Analogous to Figure 2, we aggregate the returns of
AI-labelled funds and their peers. However, now we also include funds with TNA below five million, which
we eliminated in the main analysis. The rivals are matched based on z-scores as outlined in Section 2, based
on Hoberg et al. (2018). The solid line represents AI funds, dash-doted plots the cumulative returns of the
peers, and the dotted line is the equal and value-weighted return of the CRSP market. The grey-shaded
area is a recession period, defined by NBER.
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Figure A2: Subgroups of AI funds, incl. tiny funds: Again, we sort the funds from Figure A1 into the
two categories of Figure 3: Selection an Allocation. The latter employs AI to weigh assets in the portfolio.
Selection uses AI at an earlier stage of portfolio management to skim the investment universe for potentially
profitable constituents. The solid line depicts the AI-labelled funds, combined into an AI fund portfolio with
equal weights in the left panel, and TNA weights in the right plot. Solid lines represent sub-portfolios of AI
funds. Dash-dotted lines are respective sub-portfolios of rival funds and the dotted lines are the equal and
value-weighted market portfolios of CRSP.
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