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Abstract

Inventory management by market makers can result in quoted prices
deviating from unobserved fundamental prices. In a setting where prices
have a factor structure, optimal inventory management implies that pric-
ing errors of different securities are positively correlated if they load on
the same risk factors. Using a state space model, I obtain estimates of
1-minute pricing errors for a panel of 1500 US stocks for the period 2016 –
2022. Daily cross-sectional regressions of pricing error correlations reveal
that pricing error correlations increase in the similarity of factor betas.
Investigating the role of liquidity demand in addition to liquidity supply,
my results show that ETF flows are associated with higher pricing error
correlations.

1 Introduction

In financial markets, observed trading prices can deviate from unobserved fun-
damental prices, or informationally efficient prices, resulting in pricing errors.
The presence of such pricing errors can be motivated from a liquidity provider’s
optimal inventory control problem (Foucault, Pagano, and Roell, 2013; Hen-
dershott and Menkveld, 2014). Even though such pricing errors are transitory,
they affect transaction costs of liquidity demanding traders. In this paper, I sys-
tematically analyze pricing errors in the cross-section of stocks. Using a state
space model, I identify pricing errors at the 1-minute frequency. Motivated by
an inventory control model, I run cross-sectional regressions of pricing error
correlations for a stock pair on the difference in their factor betas. In addition
to this liquidity supply channel, I analyze the relationship between correlations

∗Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, the Netherlands,
saru.ionlucas@gmail.com, +31 20 598 6060, and Tinbergen Institute. I benefited greatly from
insightful feedback and discussions with Yacine Aı̈t-Sahalia, Thierry Foucault, Jan Harren,
Alexey Ivashchenko, Dries Laurs, Edouard Mattille, and Albert Menkveld as well as partic-
ipants at DGF 2024, the ICMA Centre Doctoral Finance Symposium 2024, and VU Ams-
terdam. I thank SURF (www.surf.nl) for the support in using the National Supercomputer
Snellius. Part of this research was conducted while I was visiting the Bendheim Center for
Finance at Princeton University. I am grateful for the hospitality of the Bendheim Center for
Finance.

1

mailto:saru.ionlucas@gmail.com
www.surf.nl


Figure 1: Average unconditional daily return and pricing error correlations for
large stocks in 2019

This figure plots average daily return correlations (vertical axis) and pricing error
correlations (horizontal axis) for large stocks in 2019. Large stocks refers to stocks
that are in the top three NYSE market capitalization deciles at the beginning of the
year.
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in pricing errors and liquidity demand by ETFs, motivated by a literature that
shows that ETF flows are associated with non-fundamental volatility and corre-
lations in daily illiquidity measures (Ben-David, Franzoni, and Moussawi, 2018;
Agarwal et al., 2018).

Figure 1 plots average unconditional daily pricing error correlations on the
horizontal axis and average daily return correlations on the vertical axis for large
stocks in 2019. Large stocks are stocks that were in the top three NYSE market
capitalization deciles in the beginning of 2019. The relationship is positive: days
on which pricing errors are on average more correlated are also days on which
returns are more correlated. This suggests that pricing errors are systematic.

Institutional investors and mutual funds often trade a basket of stocks. Even
though pricing errors in individual stocks may be small, such investors face
pricing errors in transaction prices in multiple stocks. As Figure 1 suggests
that pricing errors are systematic, individual pricing errors may not average
out on aggregate. Moreover, investment mandates of institutional investors and
mutual funds may cause them to trade in similar stocks in the sense that the
stocks load on the same risk factors. This potentially aggravates the systematic
impact of pricing errors.

To shed more light on the cross-section of pricing errors, I develop a simple
inventory model based on Foucault, Pagano, and Roell (2013) in which market
makers are setting quotes for stocks which prices, and therefore returns, are
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driven by a factor structure. As in standard inventory models, market makers
adjust their quotes depending on the inventory they take, resulting in pricing
errors. The underlying factor structure in asset prices connects different securi-
ties and affects the market makers’ optimal quotes in different securities. This
results in pricing errors being correlated across securities to the extent that they
load on the same risk factors.

Guided by the implications of the theoretical model, I empirically examine
the correlations of pricing errors in the cross-section of stocks. Therefore, I con-
struct a balanced panel of 1500 stocks spanning the years 2016 – 2022. Using
a state space model (Menkveld, Koopman, and Lucas, 2007) I obtain estimates
for 1-minute pricing errors for the stocks in my sample. For every stock pair I
compute daily correlations in pricing errors. Fama and MacBeth (1973) regres-
sions of daily pricing error correlations on differences in the the stocks’ Fama
and French (1993) factor betas reveal a negative relationship between pricing
error correlations and the absolute difference in the stocks’ factor betas. This
suggests a systematic component in pricing error correlations. My results are
robust to controlling for industry similarity, linear and nonlinear stock pair char-
acteristics, as well as differences in the microstructure of trading as captured by
the difference in the stocks price and 5-minute return volatilities.

Motivated by a literature that documents a positive relationship between
ETF flows and volatility as well as the co-movement of daily illiquidity measures
(Ben-David, Franzoni, and Moussawi, 2018; Agarwal et al., 2018), I examine the
impact of liquidity demanding flows by ETFs on pricing error correlations. I
focus both and common holdings by ETFs and the exposure of a stock pair
to ETF flows and ETF creations/ redemptions. Overall, the effect of liquidity
demand is an order of magnitude smaller than the previously described liquidity
supply channel. While common holdings do not appear to move correlations
in pricing errors, larger differences in relative ETF flows are associated with a
reduction in pricing error correlations for a stock pair. This is intuitive as actual
flows are part of the liquidity provider’s maximization problem. Also, this is
consistent with the finding of Antón and Polk (2014) that common ownership
by funds is more relevant in periods of high flows.

Both my theoretical models as well as empirical analysis build on the as-
sumption that market makers take the latent risk factor structure spanning
asset prices into consideration. Therefore, I relate to Conrad and Wahal (2020)
who show that market risk is an important driver of inventory effects in assets
prices. By systematically analyzing the cross-sectional effects of different risk
factors on pricing errors, I contribute to the understanding of which risks drive
intraday prices as well as price efficiency in securities.

My work complements Rösch, Subrahmanyam, and Van Dijk (2017) who
study systematic drivers of market efficiency over the time-series by studying
cross-sectional variation in price efficiency. Their work provides evidence consis-
tent with the existence of systematic drivers of price efficiency in the time-series.
In a similar spirit, Sadka (2006) shows that time-variation in liquidity explains
a substantial part of momentum an post-earnings-announcement drift returns.
Chordia, Roll, and Subrahmanyam (2000) as well as Hasbrouck and Seppi
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(2001) study co-movement in liquidity and Pastor and Stambaugh (2003) show
that liquidity is a priced risk factor. I contribute to this literature by studying
systematic drivers of price efficiency in the cross-section of stocks. My findings
show that pricing errors vary systematically in the cross-section of stocks, which
can be rationalized by a model of optimal liquidity supply.

My work is closely related to Seasholes and Hendershott (2007) and Hen-
dershott and Menkveld (2014) who link NYSE specialist inventories to price
reversals and price pressures at a daily frequency. These findings provide evi-
dence that market maker inventories move (closing) prices at lower frequencies.
Rather than focusing on daily frequencies, I analyze intraday pricing errors as
a result of aggregate liquidity demand. By analyzing intraday patterns in price
efficiency, I follow Bogousslavsky and Collin-Dufresne (2023) who study the
impact of the volatility of intraday order imbalances on liquidity in the cross-
section and time series.

In addition, also using specialist inventories, Coughenour and Saad (2004)
find that liquidity co-moves across stocks handled by the same specialist firms
and Comerton-Forde et al. (2010) link specialist inventories to time variation
in liquidity. Instead of analyzing co-movement in liquidity between different
securities, I focus on co-movement in price efficiency in the cross-section of
stocks. I complement the findings of Coughenour and Saad (2004) by showing
that the underlying risk factor structure causes pricing errors to co-move in the
cross section of stocks.

Van Binsbergen et al. (2023) relate different asset pricing anomalies to
the buildup and resolution of long-lasting price wedges. Their model defines
price wedges as the deviation from a model-implied price. My research aims
to identify pricing errors based on a top-down approach based on filtering at a
high frequency.

I study the effect of liquidity demanding ETF flows relative to liquidity
supply on correlations in pricing errors. With this, I relate to Lou and Polk
(2021) who provide evidence that crowded trades by arbitrageurs drive prices
away from fundamentals. Antón and Polk (2014) relate correlations in Fama
and French (1993) – Carhart (1997) residuals to common ownership by funds.
Their results show that common ownership by mutual funds explains return
correlations in the cross-section of stocks. Focusing on ETF flows and owner-
ship, Ben-David, Franzoni, and Moussawi (2018) show that ETF flows increase
volatility and Agarwal et al. (2018) relate common stock ownership by ETFs
to co-movement in illiquidity. My paper contributes to this literature by an-
alyzing to which extent common ETF ownership and exposure to ETF flows
induces pricing errors co-move at high intraday frequencies. I complement their
results by showing that ETF flows are associated with co-movement in pricing
errors. At the same time, my results show that common factor exposure has
explanatory power, even when controlling for liquidity demand from ETFs.

The remainder of the paper is structured as follows. Section 2 presents a
simple inventory model in which security prices are driven by a factor structure.
Section 3 presents my methodology before I discuss the data in Section 4. I
present my main empirical results in Section 5. Finally, Section 6 concludes.
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2 An Inventory Model with Factor Structure

In this Section I present an inventory model for a market maker in a setting in
which security prices, and therefore returns, are driven by a factor structure.
The model follows the inventory model of Foucault, Pagano, and Roell (2013).

2.1 Setup

There are two periods, t = 1 and t = 2. I consider trading in N assets that load
on M underlying risk factors. The assets have a payoff structure given by

Vi =

M∑
j=1

θijfj + εi, i = 1, . . . , N (1)

with

fj = µj + ηj , j = 1, . . . ,M. (2)

The innovations εi ∼ N(0, σ2
i ), ∀i, ηj ∼ N(0, σ2

fj), ∀j are i.i.d. The payoff of
each asset i has a factor structure in the sense that the payoff is a function of
the factors f1, . . . , fM . Moreover, there is an idiosyncratic component to the
assets’ payoff given by εi. The payoff Vi of asset i is correlated with the payoff
Vĩ, ĩ ̸= i, that is, the payoff of another asset, if any of the factor loadings θij ,
θĩj are not zero for at least one j.

There areK risk-averse dealers with CARA utility function and risk aversion
ρ in the market. The dealer market is competitive. Dealers begin period t = 1
with inventory zki , i = 1, . . . , N and a cash position ck. The aggregate inventory
position at the beginning of t = 1 is denoted by

Zi =

K∑
k=1

zki , i = 1, . . . , N. (3)

In period t = 1, trading takes place and each dealer trades with one client.
Trading takes pace by each client submitting their order of quantity qi. Each
dealer posts a supply schedule yki (p). Market clearing requires that

K∑
k=1

yki (pi) = qi, i = 1, . . . , N. (4)

2.2 Dealer maximization

At date t = 1, each dealer chooses their supply schedule yki for asset i that
maximizes their expected utility at t = 2:

E1[−exp(−ρW k)] (5)

5



with W k being their final wealth at t = 2

W k = ck +

N∑
i=1

(
Vi(z

k
i − yki ) + piy

k
i

)
. (6)

Given that the innovations ε1, ε2, η1, and η2 are normally distributed, this is
equivalent to maximizing

E1[W
k]− ρ

2
V1[W

k]. (7)

2.3 Equilibrium

In equilibrium, markets must clear such that

K∑
k=1

yki = qi0, i = 1, . . . , N. (8)

Dealer k’s inverse supply schedule for asset i is derived from their maximiza-
tion problem and given by

pi =

M∑
j=1

θijµj − ρ

(zki − yki )

 M∑
j=1

θ2ijσ
2
fj + σ2

i


+

∑
ĩ ̸=i

(zk
ĩ
− yk

ĩ
)

 M∑
j=1

θijθĩjσ
2
fj

 (9)

As can be seen, the supply schedule for asset i depends not only on the dealer’s
inventory for asset i, but also on the dealer’s inventory for the other assets. This
is because all asset payoffs are a function of the same underlying factor structure
and dealers care about the risks the individual assets are exposed to. The
dependence of dealer k’s inverse supply schedule for asset i on their inventory in
asset ĩ ̸= i is scaled by the factor loadings on the respective underlying factors
in asset prices. In addition, the dealers’ quoted price schedules differ since their
starting inventories in t = 1 differ.

The dealer quotes a bid-ask spread per unit traded in asset i of

s = 2ρ

 M∑
j=1

θ2ijσ
2
fj + σ2

i

 , (10)

taking their inventory and the quantity in the other assets as given. Note that
while the quoted price schedules of the dealers differ due to the inventories with
which they enter period t = 1, quoted spreads posted by the different dealers
are the same. This is the same results as in Foucault, Pagano, and Roell (2013)
in the sense that spreads depend on the dealers’ inventory at the beginning
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of the period. Also in Bogousslavsky and Collin-Dufresne (2023) spreads are
related to dealer inventory through order imbalance. The result differs from
Hendershott and Menkveld (2014) in which spreads are orthogonal to dealer
inventory.

Using the market clearing condition (8) yields that the equilibrium price is
given by

p∗i =

M∑
j=1

θijµj − ρ̄

(Zi − qi)

 M∑
j=1

θ2ijσ
2
fj + σ2

i


+

∑
ĩ̸=i

(Zĩ − qĩ)

 M∑
j=1

θijθĩjσ
2
fj

 ,

where Zi and Zĩ are the aggregate inventories in assets i and ĩ, respectively,
as defined in (3), and ρ̄ = ρ/K is the aggregate risk aversion coefficient of the
dealers.

In equilibrium, dealer k trades

yk∗(p∗) =
q

K
+ zk − Z

K
. (11)

After trading took place, dealer k’s inventory is therefore given by
Z

K
− q

K
.

The midquote price for asset i before trading takes place can be defined as

mi =

M∑
j=1

θijµj − ρ̄

Zi

 M∑
j=1

θ2ijσ
2
fj + σ2

i


+

∑
ĩ ̸=i

Zĩ

 M∑
j=1

θijθĩjσ
2
fj

 , (12)

while the fundamental value of the asset is equal to the conditional expected
payoff of asset i, given by

m∗
i =

M∑
j=1

θijµj . (13)

The difference between the midquote and the fundamental value can be inter-
preted as the price pressure exerted by dealers on the price, or the pricing error
in the observed quotes. This pricing error is given by

−ρ̄

Zi

 M∑
j=1

θ2ijσ
2
fj + σ2

i

+
∑
ĩ̸=i

Zĩ

 M∑
j=1

θijθĩjσ
2
fj

 . (14)
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As can be seen from (14), the pricing error is negative (the midquote is below
the fundamental value of the asset) if dealers are on aggregate long in asset i,
Zi > 0. This is the standard results from the literature that dealers adjust their
quotes downward to facilitate selling if they have a long position in the asset
(Amihud and Mendelson, 1980; Hendershott and Menkveld, 2014). At the same
time, the pricing error for asset i also depends on the dealer’s aggregate position
in the other assets ĩ. The sign of this effect depends on the signs of the factor
loadings θijθĩj , j = i, . . . ,M, ĩ ̸= i. The effect is always positive (that is, the
pricing error increases) if all factor loadings are positive an the dealers have an
aggregate long position in asset ĩ, Zĩ > 0.

Intuitively, in this case all assets load on the same risk factors and increase
the dealers’ aggregate risk exposure. Therefore, the dealers want to facilitate
selling asset i even more and set their midquote lower, resulting in a more
negative pricing error. If instead for some pair of factor loadings θij > 0,
θĩj < 0 or θij < 0, θĩj > 0 (that is, the assets have opposite loadings on the risk

factors), the dealers having an aggregate long position in asset ĩ increases the
midquote, resulting in a less negative pricing error. This is because asset ĩ is a
hedge for asset i regarding risk factor j. In this scenario, having a long position
in asset ĩ decreases the overall risk exposure of the dealers to the risk factors.

Note that while the pricing error for asset i depends on the dealers’ inventory
in all assets, the bid-ask-spread depends only on inventory in asset i. As a result,
pricing errors in different assets co-move if they load on the same underlying risk
factors and dealer inventory positions co-move, while spreads do not co-move
with inventory positions. In other words, spreads in asset i are orthogonal to
inventory in asset ĩ.

3 Methodology

This Section first describes the methodology used to identify pricing errors in
Section 3.1, before turning the the empirical approach to model cross-sectional
variation in pricing errors in Sections 3.2 and 3.3.

3.1 Identification of Pricing Errors

Central to the analysis is the identification of pricing errors at every point
in time. Rather than relying on a model-based bottom-up approach to the
identification of pricing errors as, for example, Van Binsbergen et al. (2023), I
identify pricing errors using filtering based on the approach of Hasbrouck (1993)
and the state space model of Menkveld, Koopman, and Lucas (2007) in a top-
down way.
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Observed (log) prices for stock i at time t can be decomposed into two latent
components: a martingale efficient price component and a stationary pricing
error:

pi,t = mi,t + si,t (15)

mi,t = mi,t−1 + wi,t (16)

where pt are observed (midquote) prices, mt are efficient prices, wt are innova-
tions in efficient prices, and st is the pricing error. To identify innovations in
efficient prices, I incorporate information on trade flow. This yields the model:

pi,t = mi,t + si,t (17)

mi,t = mi,t−1 + κx̃i,t + µi,t (18)

si,t = ϕisi,t−1 + ψxi,t + νi,t (19)

where (17) is the observation equation, (18) is the state equation for latent
efficient prices, and (19) is the state equation for latent pricing errors. Fur-
thermore, the model assumes that νi,t ∼ N (0, σ2

i,ν) and µi,t ∼ N (0, σ2
i,µ). As

discussed in Hendershott and Menkveld (2014) and Menkveld and Saru (2024),
innovations in order flow contain information while imbalances in order flow af-
fect liquidity (Brandt and Kavajecz, 2004; Evans and Lyons, 2008). Therefore,
including signed order flow allows identifying pricing errors in the model. The
identifying assumption that conditional on controlling for trade flow νi,t and
µi,t are uncorrelated is consistent with similar applications of the model such
as Hendershott and Menkveld (2014) and Brogaard, Hendershott, and Riordan
(2014), among others.

The model is estimated stock-day-by-stock-day at a 1-minute frequency.
Midquote prices are used as observed proxy for efficient prices. By using midquote
prices, bid-ask bounces are not part of the pricing error. Trade flow xi,t is the
signed order flow for every 1-minute interval.1 Innovations in trade flow x̃i,t
are obtained as the residual from an AR model with 15 lags. Using aggregate
trade flow captures aggregate liquidity demand in the market. Furthermore, it
can be interpreted as the aggregate inventory that all market makers in stock
i absorb. This is aligned with the theoretical model presented in Section 2 in
which midquotes and pricing errors depend on the aggregate position of all mar-
ket makers. Moreover, using signed aggregated order flow captures order flow
information that is in principle available to market participants subscribing to
data feeds (George and Khoja, 2023).

The model is estimated by maximum likelihood and the Kalman filter is used
to evaluate the likelihood function. The Kalman filter requires initial priors for
the latent states characterized by a prior mean and a prior variance. I initialize
the efficient price series with a diffuse prior. That is, the prior variance is set to
κ with κ→ ∞. Pricing errors are initialized as stationary states with the prior
variance set to the unconditional variance. After obtaining estimates for the

1I discuss details on trade signing in Section 4.

9



coefficients, I obtain estimates of the latent state variables – the efficient price
as well as the pricing error – as smoothed states of the model. These smoothed
states are conditional on all observations on the respective trading day in stock
i. The smoothed states for the pricing error equation (19) are central to my
analysis of pricing errors in the cross section of stocks.

Even though I require that there are at least 200 trading days per year with
non-zero volume2, there are time intervals with zero volume as well as quotes
in the sample. The proposed state space model naturally deals with missing
observations through extrapolation (Kalman filter) and interpolation (for the
smoothed states).

3.2 Factor Structure in Returns

The theoretical model in Section 2 predicts that pricing errors of different stocks
are connected through the stocks’ loadings on underlying risk factors. To test
this implication empirically, I run factor regressions to estimate the factor betas
of different stocks. In the baseline version, I use the factors proposed by Fama
and French (1993): the market factor, the size factor (SMB), and the value
factor (HML).

I estimate the factor betas by running daily rolling time-series regressions
of excess returns on the factors. The last 500 available return observations in
CRSP are used for the rolling regressions. If there is a missing return observation
in CRSP for a trading day within the estimation window, the respective day
is left out of the estimation, but estimation is still performed for the overall
window.

3.3 Cross-Sectional Variation in Pricing Error Correla-
tions

Using the pricing error estimates obtained as smoothed states from the state
space model, I compute the realized correlations in pricing errors for each stock
pair in my sample, ρsij,t. Based on the factor betas for each stock pair, I compute
the the absolute difference in their factor betas as |∆βij,t|. I then estimate daily
cross sectional regressions for the realized correlations as

ρsij,t = a+ b0ρ
x
ij,t + b1|∆βM

ij,t−1|+ b2|∆βSMB
ij,t−1|

+ b3|∆βHML
ij,t−1|+Xγ + εij,t, (20)

where ρxij,t is the correlation in order flow for stock pair i, j, |∆βM
ij,t−1|, |∆βSMB

ij,t−1|,
and |∆βHML

ij,t−1| are the absolute differences in the loadings on the Fama and
French (1993) factors estimated based on a rolling regression as described in
Section 3.2. Other included control variables are denoted by Xγ. All indepen-
dent variables are standardized to facilitate economic interpretability.

2I discuss details on sample construction in Section 4.
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I implement the estimation in a Fama and MacBeth (1973) fashion. There-
fore, I estimate the cross-sectional regressions day-by-day and report time-series
averages of the daily coefficients. I report Newey and West (1987) standard
errors that are robust to time-series autocorrelation in the cross-sectional esti-
mates of 20 lags.

This implementation is similar to Antón and Polk (2014) who estimate
monthly regressions for realized correlations in four-factor abnormal returns in
a Fama and MacBeth (1973) fashion. Agarwal et al. (2018) estimate a pooled
regression for quarterly correlations in stock liquidity. In my setting, daily re-
gressions in a Fama and MacBeth (1973) style a preferred as market conditions
potentially driving the realized correlations only change slowly. Moreover, I
estimate both the state space model as well as the cross-sectional regressions
day-by-day. Aligning the frequencies alleviates concerns of mechanical correla-
tions of the dependent and independent variables in equation (20) over different
trading days. Moreover, the approach of obtaining smoothed states from the
state space model and estimating their relationship with a set of independent
variables is consistent with Chordia, Green, and Kottimukkalur (2018).

Correlations in order flow for stock pair i, j on day t, ρxij,t, are included
in the model as the order flow series identify pricing errors in the state space
model presented in Section 3.1. The inclusion of the absolute differences of
the factor betas is motivated by the theoretical model presented in Section 2.
The model predicts that as the absolute difference in the factor betas increases,
correlations should decrease. By controlling for correlations in the order flow
series, the differences capture correlation in pricing errors above and beyond
correlation in pricing errors that is due to a potential factor structure in the
order flow series.

Additional control variables contained in Xγ are the absolute difference in
log midquotes of stock pair i, j on date t − 1,3 the 5-minute midquote return
volatilities of stocks i and j on date t− 1, and the factor betas of stocks i and
j as well as squared factor betas. I refer to the latter as linear and nonlinear
characteristics controls. Including the difference in the midquote prices captures
differences in the participation of traders as well as differences in liquidity related
to the price level and the relative tick size (Weller, 2018; Li and Ye, 2023). 5-
minute midquote return volatilities account for potential differences in liquidity
as a result of volatility (Conrad and Wahal, 2020). Including the factor betas
as well as their quadratic terms captures potential differences in the stocks that
are related to their betas and follows Antón and Polk (2014).

The time convention of the independent variables in equation (20) captures
which information is available to market makers on day t. As discussed before,
correlations in order flow on day t, ρxij,t, are included as they mechanically drive
correlations in pricing errors. The best estimate of the factor exposure of stock
returns available to the market maker are the factor betas estimated including

3I run additional regressions confirming that results do not change if both the midquotes
of stocks i and j are included as control variables.
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all return observations until day t − 1. Therefore, these betas are included in
the model. For the other control variables, observations for t− 1 are included.

4 Data

The data used in the main analysis come from TAQ and CRSP. I construct a
balanced panel based on all common stocks listed on NYSE, Amex and NAS-
DAQ from CRSP. The sample period spans January 1, 2016 – December 31,
2022.

For a stock to be included in the sample, I require a market capitalization of
at at least USD 100 million and a stock price between USD 5 and USD 1000 at
the end of the previous month. This is in line with, for example Hendershott and
Menkveld (2014) or Bogousslavsky and Collin-Dufresne (2023). Furthermore,
for a security to be included in the analysis I require the security to have at least
200 trading days displaying non-zero trading volume per year (Duarte, Hu, and
Young, 2020). My final sample contains 1500 securities.

For each year, securities are assigned to market capitalization deciles based
on the market capitalization at the end of the previous year. I use the market
equity breakpoints for NYSE from Ken French’s website for this.

TAQ data is cleaned according to the filters proposed by Holden and Ja-
cobsen (2014). Trades are signed using the Lee and Ready (1991) algorithm,
given it has been documented to perform well (Chakrabarty, Pascual, and Shk-
ilko, 2015). Data from CRSP and TAQ is merged using the TCLINK linking
files from WRDS. For the analysis, only observations within the trading hours
between 9:30 a.m. and 4:00 p.m. are kept. As my interest is in intraday pricing
errors that are potentially driven by high-frequency order imbalances (Bogous-
slavsky and Collin-Dufresne, 2023), I work with a data frequency of 1 minute.

The factor regressions use daily return data from CRSP. The daily return
factors as well as the risk-free rate come from Ken French’s website.

Descriptive statistics for my sample by year and market capitalization are
presented in Table 1. The descriptive statistics suggest that there is consider-
able variation in key variables both in the time-series as well as in the cross-
section. It is notable that both for high market capitalization stocks as well
as for medium market capitalization stocks effective spreads increase over the
sample period. Dollar trading volume increases over the sample period for all
market capitalizations.

Given the cross-sectional differences documented in Table 1, I report results
from estimating the state space model by year and market capitalization and
perform my cross-sectional analysis both for the overall sample as well as for
high market capitalization stocks only. This alleviates concerns that my results
are driven by small, irregularly traded stocks.
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Table 1: Descriptive Statistics

This table presents descriptive statistics for the stocks in the sample by calendar year and market capitalization. High market capitaliza-
tion refers to stocks that are in the top three NYSE market capitalization deciles at the beginning of the respective year. Medium market
capitalization refers to stocks that are in the middle four NYSE market capitalization deciles at the beginning of the respective year.
Similarly, low market capitalization refers to stocks that are in the bottom three NYSE market capitalization deciles at the beginning of
the respective year. midquoteit refers to the dollar midquote and is from TAQ. shares outstit refers to the number of shares outstanding
(in million) and is from CRSP. market capit refers to the market capitalization in millions of dollars and is from CRSP. espreadit refers to
the share-volume-weighted effective spread in basis points and is from TAQ. volatilityit refers to the 5-minute midquote return volatility
in basis points as is computed based on data from TAQ. volumeit refers to the daily trading volume in millions of dollars and is from
TAQ.

Panel A: Full Sample

2016 2017 2018 2019 2020 2021 2022

midquoteit 50.65 60.81 69.12 71.60 75.15 101.82 89.67
shares outstit 240.13 239.17 238.02 235.03 234.49 236.33 234.37
market capit 11691.33 13774.95 15597.21 16319.71 18161.62 24458.70 23381.66
espreadit 18.06 16.22 17.08 15.33 19.67 16.66 16.30
volatilityit 20.00 17.07 20.24 18.61 31.51 21.31 23.67
volumeit 71.79 73.93 96.36 85.65 128.73 134.67 139.22
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Table 1: – continued

Panel B: High Market Capitalization

2016 2017 2018 2019 2020 2021 2022

midquoteit 82.94 96.99 111.69 121.11 139.77 191.28 161.63
shares outstit 707.63 700.03 670.15 653.24 642.22 653.67 623.42
market capit 37336.60 43567.86 47673.79 49684.72 55965.70 76861.23 70348.92
espreadit 4.46 3.82 4.35 4.24 6.30 5.48 5.86
volatilityit 14.27 11.31 15.58 13.80 23.56 15.89 20.11
volumeit 217.27 218.61 282.51 247.61 382.22 405.80 408.16

Panel C: Medium Market Capitalization

2016 2017 2018 2019 2020 2021 2022

midquoteit 46.49 56.42 60.91 61.24 58.35 81.14 71.94
shares outstit 83.67 84.08 82.38 79.74 83.54 93.50 86.94
market capit 2684.90 3303.66 3502.74 3352.47 3202.13 4902.85 4130.28
espreadit 10.10 9.71 10.23 9.38 13.09 11.52 11.06
volatilityit 19.30 16.17 19.87 18.39 31.45 21.26 23.82
volumeit 24.67 27.48 29.90 26.28 31.66 38.04 32.55
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Table 1: – continued

Panel D: Low Market Capitalization

2016 2017 2018 2019 2020 2021 2022

midquoteit 27.70 35.03 38.97 34.73 30.56 43.34 38.42
shares outstit 26.99 28.71 28.39 27.72 27.65 30.14 30.25
market capit 523.25 697.96 756.42 665.03 581.46 902.30 790.50
espreadit 39.77 34.58 38.53 36.29 45.58 35.11 34.79
volatilityit 25.87 23.06 25.23 24.09 40.51 26.74 27.25
volumeit 3.48 5.20 5.27 4.18 5.47 6.23 4.81

15



5 Results

In this Section I present the main results. First, I discuss the results from
estimating the state space model in Section 5.1. Then, I discuss the cross-
sectional results in Section 5.2 before turning to the relationship with liquidity
demand in Section 5.3. Section 5.4 discusses the robustness of my results.

5.1 State Space Results

The theoretical model presented in Section 2 suggests that pricing errors are
more correlated for stocks that load in the same direction on the underlying
risk factors. To empirically test this prediction, I first need estimates of pricing
errors for every point in time. As described in Section 3, I obtain pricing error
estimates as smoothed states form a state space model. I present the estimation
results from estimating the state space model in Table 2.

In light of the descriptive statistics presented in Section 4, I present results
by year and market capitalization. The volatilities of efficient price innovations
– permanent volatility – as well as pricing error innovations – residual pricing
error volatility – increase for lower market capitalization deciles. This holds
across all years in the sample and is consistent with the results of Brogaard,
Hendershott, and Riordan (2014) and Hendershott and Menkveld (2014). Note
that these are only one component of the volatility of efficient price innovations
and pricing errors, respectively. Both are also driven by the volatility of order
flow innovations and order flow, respectively.

In this setting, order imbalances can be interpreted as the aggregate order
flow liquidity providers face. That is, if the aggregate order imbalance is pos-
itive, liquidity providers on aggregate take a short position. Order imbalance
innovations are informative across all market capitalizations for all years, as
indicated by the the positive κ. The positive κ suggests that liquidity providers
are on aggregate subject to adverse selection. This result is consistent with
Menkveld and Saru (2024) who show that clients are relatively more informed
than intermediaries at lower intraday frequencies.

In addition, order imbalances are positively associated with pricing errors
for high and medium market capitalization stocks (ψ is positive). This result
suggests that, on aggregate, liquidity providers raise their midquotes relative
to the latent efficient price in response to a positive order imbalance (that is,
when they sell on aggregate). This result is consistent with the theoretical
model presented in Section 2 as well as the documented relationship between
price pressures and specialist inventories (Hendershott and Menkveld, 2014). In
response to taking a net short position, market makers want to facilitate selling
to them and discourage more buying from them. They achieve this by raising
both the bid and the offer price, increasing the midquote price.

It is notable that the impact of order imbalances on pricing errors is negative
for small stocks across all years (ψ is negative). This is inconsistent with the
previously described channel of market makers facilitating selling to them in
response to taking a short position. Rather, a negative ψ suggests that market
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Table 2: State space model estimation results

This table presents estimation results for the state space model
pi,t = mi,t + si,t, mi,t = mi,t−1 + κx̃i,t + µi,t, si,t = ϕisi,t−1 + ψxi,t + νi,t

for each stock-day using log midquote prices as observable prices (pi,t). xt is order flow and x̃t are innovations in order flow obtained as
the residual from an AR(10) model. The table reports average coefficients by year and market capitalization. High market capitalization
refers to stocks that are in the top three NYSE market capitalization deciles at the beginning of the respective year. Medium market
capitalization refers to stocks that are in the middle four NYSE market capitalization deciles at the beginning of the respective year.
Similarly, low market capitalization refers to stocks that are in the bottom three NYSE market capitalization deciles at the beginning of
the respective year. σµ and σν are in bp and κ as well as ψ in bp/1, 000, 000 USD. Standard errors are double clustered by stock and day
and reported in parentheses. ∗ denotes significance at the 1% level.

2016 2017 2018

high medium low high medium low high medium low

σµ 4.621∗ 6.164∗ 7.767∗ 3.696∗ 5.230∗ 7.122∗ 5.280∗ 6.522∗ 7.767∗

(0.120) (0.139) (0.151) (0.069) (0.084) (0.108) (0.127) (0.147) (0.203)
σν 1.708∗ 2.580∗ 5.040∗ 1.418∗ 2.236∗ 4.387∗ 1.814∗ 2.445∗ 4.874∗

(0.052) (0.070) (0.173) (0.030) (0.045) (0.130) (0.052) (0.071) (0.230)
ϕ 0.252∗ 0.221∗ 0.189∗ 0.214∗ 0.195∗ 0.183∗ 0.194∗ 0.176∗ 0.170∗

(0.006) (0.005) (0.004) (0.007) (0.004) (0.003) (0.008) (0.005) (0.004)
κ 8.925∗ 75.117∗ 521.425∗ 6.836∗ 62.034∗ 448.182∗ 7.783∗ 67.519∗ 492.269∗

(0.546) (2.662) (64.547) (0.294) (2.500) (38.002) (0.420) (4.101) (28.562)
ψ 3.994∗ 19.610∗ −143.012∗ 3.285∗ 11.808∗ −23.798 3.755∗ 14.523∗ −74.780∗

(0.245) (1.043) (37.006) (0.126) (0.788) (29.096) (0.190) (1.104) (15.657)
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Table 2: – continued

2019 2020 2021

high medium low high medium low high medium low

σµ 4.598∗ 6.052∗ 7.339∗ 7.711∗ 10.045∗ 12.223∗ 5.304∗ 7.078∗ 8.362∗

(0.082) (0.092) (0.129) (0.286) (0.324) (0.389) (0.112) (0.133) (0.154)
σν 1.686∗ 2.447∗ 4.878∗ 2.724∗ 4.080∗ 7.909∗ 1.873∗ 2.775∗ 5.457∗

(0.043) (0.065) (0.224) (0.135) (0.227) (0.497) (0.047) (0.082) (0.214)
ϕ 0.229∗ 0.191∗ 0.154∗ 0.253∗ 0.206∗ 0.162∗ 0.230∗ 0.180∗ 0.161∗

(0.006) (0.005) (0.004) (0.006) (0.005) (0.004) (0.006) (0.005) (0.004)
κ 7.202∗ 63.608∗ 535.538∗ 11.392∗ 104.811∗ 1032.641∗ 7.533∗ 61.343∗ 496.751∗

(0.429) (2.323) (28.520) (0.688) (4.545) (74.845) (0.523) (2.396) (23.911)
ψ 3.588∗ 18.244∗ −95.977∗ 5.641∗ 31.508∗ −184.126∗ 3.770∗ 17.434∗ −61.809∗

(0.226) (0.795) (18.991) (0.299) (1.959) (40.247) (0.175) (0.940) (10.659)
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Table 2: – continued

2022

high medium low

σµ 6.915∗ 8.041∗ 8.522∗

(0.138) (0.144) (0.151)
σν 2.293∗ 2.742∗ 5.255∗

(0.061) (0.067) (0.218)
ϕ 0.228∗ 0.176∗ 0.146∗

(0.009) (0.006) (0.004)
κ 8.706∗ 72.991∗ 618.215∗

(0.486) (2.326) (33.424)
ψ 4.543∗ 20.383∗ −85.716∗

(0.184) (0.807) (16.422)
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makers lower the midquote price in response to taking a short position. Two
points are worth noting. First, there is relatively more heterogeneity in the
stock-day estimates for low market capitalization stocks than for medium and
high market capitalization stocks as can be seen by the relatively larger standard
errors. Second, small stocks are traded less frequently than large and medium
sized stocks (see Table 1). A potential explanation for the negative impact of
order imbalances on pricing errors is a correction of pricing errors. If liquidity
providers are subject to adverse selection, and the direction of the order imbal-
ance as well as the trading price contain information, they adjust their quotes
incorporating this information (Glosten and Milgrom, 1985). As a results, liq-
uidity providers update their quotes in the direction of the trade. Moreover,
this is consistent with liquidity demanding trades executing against potentially
stale quotes (Budish, Cramton, and Shim, 2015; Aquilina, Budish, and O’Neill,
2021) and the finding of Brogaard, Hendershott, and Riordan (2014) that HFTs’
market orders trade in the opposite direction of pricing errors.

While these results give an overview of the volatility of pricing errors in
the cross-section as well as of the reaction of pricing errors to imbalances in
order flow, they do not speak to the cross-sectional relationship between pricing
errors. I address this in the next Section.

5.2 Cross-Sectional Results

Table 3 reports cross-sectional results for daily correlations in pricing errors.
Based on the evidence presented in Tables 1 and 2, I report results for the full
sample (Panel A) as well as for high market capitalization stocks only (Panel
B).

In the first column, I present results for a reduced-form regression on speci-
fication (20), with only a constant and the correlation in signed order flow (that
is, the correlation in the order imbalance) as independent variable. This speci-
fication serves as a benchmark for all other specifications as daily pricing error
correlations are mechanically a function of daily order flow correlations. This
is because in the state space model the order flow series as well as innovations
in order flow are used to identify pricing errors and efficient price innovations,
as described in Section 3. For better comparability of the results, I standardize
correlations in signed order flow. As expected, pricing error correlations are
positively related to correlations in signed order flow. This effect is stronger for
the full sample than for large market capitalization stocks.

In the second column, I add standardized differences between the factor load-
ings on the Fama and French (1993) factors for each stock pair i, j. Consistent
with the the theoretical model in Section 2, daily pricing error correlations for
stock pair i, j decrease as the difference in the Fama and French (1993) factor
betas increases.

The effect is both economically and statistically significant. The coefficients
on the correlation in signed order flow and the differences in factor betas are
of a similar magnitude. Therefore, a one-standard deviation increase in the
correlation in signed order flow has a comparable effect to a one-standard devi-
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Table 3: Cross-Sectional Results for Pricing Error Correlations

This table reports Fama and MacBeth (1973) estimates of daily cross-sectional re-
gressions for correlations in pricing errors:

ρsij,t = a+ b0ρ
x
ij,t + b1|∆βM

ij,t−1|+ b2|∆βSMB
ij,t−1|+ b3|∆βHML

ij,t−1|+Xγ + εij,t.
Pricing errors are obtained as smoothed states from estimating the state space model
on the stock-day level. All independent variables are standardized to facilitate eco-
nomic interpretability. ρxi,j,t is the correlation in the signed order flow series, |∆βM

i,j,t−1|
is the absolute difference in the market betas of stocks i and j, obtained from a factor
regression using the last 500 available return observations. Similarly, |∆βSMB

i,j,t−1| is the
absolute difference in the SMB betas, and |∆βHML

i,j,t−1| is the absolute difference in the
HML betas of stocks in i and j. |∆mt−1| is the absolute difference in the midquotes
of stocks i and j on trading day t− 1, and σ(r5min

i,t−1) as well σ(r
5min
j,t−1) are the 5-minute

midquote return volatilities for stocks i and j on trading day t− 1. The specifications
that control for linear and nonlinear characteristics include the (standardized) factor
betas as well as squared terms of the factor betas for stocks i and j. I report Newey
and West (1987) standard errors robust to autocorrelation of up to 20 lags in the
cross-sectional estimates. Standard errors are reported in parentheses. ∗ denotes sig-
nificance at the 1% level.

Panel A: Full Sample

(1) (2) (3) (4)

Constant 0.01908∗ 0.01932∗ 0.01930∗ 0.01491∗

(0.000 74) (0.000 76) (0.000 76) (0.000 76)
ρxi,j,t 0.00868∗ 0.00296∗ 0.00290∗ 0.00265∗

(0.001 01) (0.000 07) (0.000 07) (0.000 06)
|∆βM

i,j,t−1| −0.00214∗ −0.00196∗ −0.00232∗

(0.000 11) (0.000 10) (0.000 10)
|∆βSMB

i,j,t−1| −0.00163∗ −0.00145∗ −0.00206∗

(0.000 08) (0.000 08) (0.000 07)
|∆βHML

i,j,t−1| −0.00052∗ −0.00019 −0.00350∗

(0.000 18) (0.000 19) (0.000 15)
|∆mt−1| −0.00078∗ −0.00063∗

(0.000 06) (0.000 04)
σ(r5min

i,t−1 ) −0.00167∗ −0.00256∗

(0.000 13) (0.000 10)
σ(r5min

j,t−1) −0.00166∗ −0.00245∗

(0.000 11) (0.000 10)

Linear characteristics No No No Yes
Nonlinear characteristics No No No Yes
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Table 3: – continued

Panel B: High Market Capitalization

(1) (2) (3) (4)

Constant 0.02726∗ 0.02726∗ 0.02726∗ 0.01918∗

(0.001 24) (0.001 24) (0.001 24) (0.001 36)
ρxi,j,t 0.00310∗ 0.00288∗ 0.00286∗ 0.00263∗

(0.000 08) (0.000 08) (0.000 08) (0.000 08)
|∆βM

i,j,t−1| −0.00411∗ −0.00421∗ −0.00526∗

(0.000 20) (0.000 20) (0.000 23)
|∆βSMB

i,j,t−1| −0.00251∗ −0.00246∗ −0.00331∗

(0.000 12) (0.000 13) (0.000 17)
|∆βHML

i,j,t−1| −0.00213∗ −0.00209∗ −0.00658∗

(0.000 27) (0.000 28) (0.000 27)
|∆mt−1| −0.00045∗ −0.00049∗

(0.000 09) (0.000 08)
σ(r5min

i,t−1 ) −0.00007 −0.00266∗

(0.000 17) (0.000 14)
σ(r5min

j,t−1) −0.00050∗ −0.00268∗

(0.000 16) (0.000 14)

Linear characteristics No No No Yes
Nonlinear characteristics No No No Yes

ation decrease in the difference between the market betas. For the full sample
results, the effect is the strongest for the difference between the market betas.
The effect is weaker for the differences between the SMB betas as well as the
HML betas, respectively. In addition, the effect is similar in magnitude to
the effect of common fund ownership on the correlation in Fama and French
(1993) – Carhart (1997) residuals documented by Antón and Polk (2014).
The finding that the economic effect is the strongest for differences in market
betas is consistent with Conrad and Wahal (2020) who document that market
risk drives inventory effects. My results additionally suggest that differences in
the exposure to market risk drive price efficiency in the cross-section of stocks.
Moreover, market risk is not the only systematic risk factor driving inventory
effects in the cross-section of stocks, with the exposure to other risk factors
having an economically meaningful effect as well.

Comparing the full sample results with the results for high-market capitaliza-
tion stocks reveals interesting differences. Firstly, the results are overall stronger
for high-market capitalization stocks than for the full sample. Secondly, the dif-
ferences in loadings on the market factor still appear to be the most relevant
driver of variation in pricing error correlations in the cross-section. At the same
time, however, the effect for differences in SMB betas as well as for differences
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in HML betas increases, both in absolute terms as well as relative to the impact
of correlations in signed order flow. These results alleviate the concern that my
results are driven by small, irregularly traded stocks. In contrast, they appear
to be driven by large, regularly traded stocks.

In the third column, I add controls for the differences in midquote prices on
the previous trading day as well as the for the 5-minute return volatilities of
stocks i and j. In addition, I add linear and nonlinear characteristic controls
in column 4, following the specifications of Antón and Polk (2014). Overall,
adding these controls leaves the results unchanged for both the full sample as
well as for high market capitalization stocks only. If anything, the effect appears
stronger once the full set of linear and nonlinear characteristic controls is added.

The literature suggests that different types of traders may be more active in a
subset of stocks, dependent on the stocks’ price as the relative tick size decreases
in the trade price (Weller, 2018; Li and Ye, 2023). For instance, Weller (2018)
uses the previous stock price as an instrument for the activity of algorithmic
and high-frequency traders. Suppose market making and liquidity provision are
fragmented in the cross-section of stocks, market makers are limited in their
risk bearing capacity, face capital constraints (as in Stoll (1978) ), and/or are
only imperfectly able to trade with each other as in the theoretical model in
Section 2. Then, one would expect pricing error correlations to be larger among
the subset of stocks in which the respective market makers are active. If this
fragmentation occurs along different price levels, this would be captured by the
difference in the midquote prices. My result that an increase in the difference
between the last midquote prices on the previous trading day is associated with
a reduction in the correlation in pricing errors is consistent with this intuition.

Additionally, I include standardized midquote prices rather than the dif-
ference in midquote prices in untabulated results. I find that an increase in
midquote prices of stock pair i, j is associated with a reduction in the pricing
error correlation for the stock pair. This holds both for the overall sample as well
as for high market capitalization stocks only. To the extent that the past stock
price proxies for algorithmic and high-frequency trading activity, this is consis-
tent with Brogaard, Hendershott, and Riordan (2014) and Hendershott, Jones,
and Menkveld (2011) who document that high-frequency trading is associated
with an improvement in liquidity and price efficiency.

The result that the effect is stronger for high market capitalization stocks is
consistent across all specifications. A possible explanation is that as these stocks
are more frequently traded, liquidity providers take positions more frequently.
As a result, they adjust their quotes more frequently in response to their po-
sitions, resulting both more in frequent as well as more frequently changing
pricing errors.

This result is relevant for institutional investors trading a basket of stocks.
Even when these stocks may be liquid as measured by the bid-ask spread, the
pricing errors are correlated in the cross-section. Moreover, pricing errors are
systematic as shown in Figure 1.

The finding that the difference in market betas has the strongest economic
effect is consistent with the literature documenting common factors in the time
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series of liquidity as well as price efficiency metrics (Conrad and Wahal, 2020;
Rösch, Subrahmanyam, and Van Dijk, 2017). My results show that common
factor also drive the cross-section of price efficiency.

5.3 Relationship with Liquidity Demand

The results in the previous sections are consistent with a liquidity supply chan-
nel as in the theoretical model presented in Section 2. However, Ben-David,
Franzoni, and Moussawi (2018) show that ETFs increase the volatility in un-
derlying securities through an arbitrage channel. Agarwal et al. (2018) show
that common ETF ownership increases stock-level illiquidity to co-move. This
raises the question whether the findings documented in Section 5.2 could be
driven by a liquidity demand rather than by a liquidity supply channel. This
could be the case if ETF flows have an underlying factor structure and marker
maker set their quotes both facing their current inventory positions as well as
anticipating future flows due to ETF arbitrage.

In this Section I explore the possibility that the results are indeed driven
by a liquidity demand channel. Given the findings documented in the previous
literature, I focus particularly on ETF ownership. Therefore, I obtain daily
data on ETF constituents and ETF flows from ETF Global. Starting from the
universe of all ETFs in ETF Global, I keep only ETFs classified as equity ETFs
and drop levered ETFs, active ETFs, and ETNs. On average, there are 1,213
unique ETFs per month in my sample, with an upward trend over the sample
period. This is comparable to the coverage of Agarwal et al. (2018). ETF Global
contains daily data on ETF constituents, the weight of the constituents in the
ETF, the number of shares held in the constituent, and aggregate ETF flows.
Constituents in ETF Global are identified by their CUSIP. I merge the ETF
constituents to their CRSP PERMNO based on historical CUSIP information
in CRSP MSENAMES.

I compute several measures of (differences in) stock exposure to ETF owner-
ship. First, I compute a measure capturing the exposure of stocks i and j to ETF
flows. Therefore, I compute the inflow (outflow) into (out of) stock i as a result
of its exposure to ETF ownership, scaled by stock i’s market capitalization:

FLOWi,t =

∑F
f=1 w

f
i,tFLOW

f
t

Si,tPi,t
(21)

where wf
i,t denotes the weight of stock i in ETF f and FLOW f

t is the inflow
(outflow) experienced by ETF f on day t. To capture the difference in exposure
of stocks i and j to ETF flows, I compute the absolute difference

|∆FLOWij,t| = |FLOWi,t − FLOWj,t|. (22)

As the other independent variables, I standardize |∆FLOWij,t| for every trading
day. In a separate specification, I include standardized absolute exposures of
stocks i and j to ETF flows, |FLOWi,t| and |FLOWj,t|.
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Next, I adopt the measure of Antón and Polk (2014) to estimate the common
ownership of stock pair i, j by the ETFs in my sample:

CAPij, t =

∑F
f=1(S

f
i,tPi,t + Sf

j,tPj,t)

Si,tPi,t + Sj,tPj,t
(23)

where the numerator sums the total holdings of all ETFs in the sample in
stock pair i, j and the denominator scales by the total market capitalization of
stocks i and j. The number of shares held by the ETFs in my sample comes
from ETF Global, while data on prices and total shares outstanding come from
CRSP. To facilitate economic interpretability, CAPij,t is rank-transformed and
standardized for every trading day. This measure is also used by Agarwal et al.
(2018).

In addition, I compute a measure intended to capture changes in the number
of shares held by ETFs, that is, ETF creations and redemptions. Therefore, I
fist compute changes in ETF holdings in stock i, scaled by the number of shares
outstanding in stock i

CREATIONSi,t =

∑F
f=1(S

f
i,t − Sf

i,t−1)

Si,t
, (24)

where Sf
i,t is the number of shares ETF f holds in stock i on day t and Si,t is the

number of shares outstanding of stock i on day t. This measure is positive for
ETF creations and negative for ETF redemptions. Then, I compute a measure
capturing the difference in the exposure of stocks i and j to ETF creations and
redemptions:

|∆CREATIONi,j,t| = |CREATIONSi,t − CREATIONSj,t|. (25)

Intuitively, scaling ETF creations and redemptions by the amount of shares
outstanding captures the relative intensity of creations and redemptions.

To the extent that ETF ownership drives daily pricing error correlations, I
expect common ETF ownership CAPij,t to be psoitively associated with pricing
error correlations (Antón and Polk, 2014; Agarwal et al., 2018). Similarly, I
expect the coefficient on absolute ETF flows (|FLOWi,t| and |FLOWj,t|) to be
positive (Antón and Polk, 2014; Ben-David, Franzoni, and Moussawi, 2018).
At the same time, I expect the coefficient on the difference in exposure to
ETF flows (|∆FLOWij,t|) and the difference in exposure to ETF creations and
redemptions (|∆CREATIONSij, t|) to be negative (Ben-David, Franzoni, and
Moussawi, 2018).

According to Ben-David, Franzoni, and Moussawi (2018) ETF sponsors
disseminate net-asset values at a 15-second frequency throughout the trading
day. Since I analyze data at a lower frequency — at a 1-minute frequency –
I am able to capture potential pricing errors arising as a consequence of ETF
sponsor’s arbitrage activity.

Results from estimating daily cross-sectional regressions for correlations in
pricing errors including the above measures for exposure to ETF ownership
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Table 4: Cross-Sectional Results Including Liquidity Demand Proxies

This table reports Fama and MacBeth (1973) estimates of daily cross-sectional re-
gressions for correlations in pricing errors

ρsij,t = a+ b0ρ
x
ij,t + b1|∆βM

ij,t−1|+ b2|∆βSMB
ij,t−1|+ b3|∆βHML

ij,t−1|+Xγ + εij,t
including proxies for liquidity demand. Pricing errors are obtained as smoothed states
from estimating the state space model on the stock-day level. All independent vari-
ables are standardized to facilitate economic interpretability. ρxi,j,t is the correlation in
the signed order flow series, |∆βM

i,j,t−1| is the absolute difference in the market betas
of stocks i and j, obtained from a factor regression using the last 500 available return
observations. Similarly, |∆βSMB

i,j,t−1| and |∆βHML
i,j,t−1| are the absolute difference in the

SMB and HML betas of stocks in i and j, respectively. All specifications include
controls for the absolute difference in the midquotes of stocks i and j on trading day
t−1, 5-minute midquote return volatilities for stocks i and j on trading day t−1, and
linear as well as nonlinear characteristics controls. I report Newey and West (1987)
standard errors robust to autocorrelation of up to 20 lags in the cross-sectional esti-
mates. Standard errors are reported in parentheses. ∗ denotes significance at the 1%
level.

Panel A: Full Sample

(1) (2) (3) (4)

Constant 0.01492∗ 0.01495∗ 0.01487∗ 0.01491∗

(0.000 76) (0.000 76) (0.000 76) (0.000 76)
ρxi,j,t 0.00264∗ 0.00264∗ 0.00263∗ 0.00264∗

(0.000 06) (0.000 06) (0.000 06) (0.000 06)
|∆βM

i,j,t−1| −0.00232∗ −0.00231∗ −0.00234∗ −0.00232∗

(0.000 10) (0.000 10) (0.000 10) (0.000 10)
|∆βSMB

i,j,t−1| −0.00205∗ −0.00207∗ −0.00199∗ −0.00206∗

(0.000 07) (0.000 07) (0.000 07) (0.000 07)
|∆βHML

i,j,t−1| −0.00350∗ −0.00351∗ −0.00350∗ −0.00351∗

(0.000 15) (0.000 15) (0.000 15) (0.000 15)
|∆FLOWij,t| −0.00004

(0.000 04)
|FLOWi,t| 0.00045∗

(0.000 04)
|FLOWj,t| 0.00047∗

(0.000 04)
CAPi,j,t 0.00097∗

(0.000 05)
|∆CREATIONi,j,t| −0.00012∗

(0.000 03)
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Table 4: – continued

Panel B: High Market Capitalization

(1) (2) (3) (4)

Constant 0.01906∗ 0.01916∗ 0.01917∗ 0.01914∗

(0.001 36) (0.001 35) (0.001 36) (0.001 36)
ρxi,j,t 0.00263∗ 0.00263∗ 0.00263∗ 0.00263∗

(0.000 08) (0.000 08) (0.000 08) (0.000 08)
|∆βM

i,j,t−1| −0.00521∗ −0.00526∗ −0.00526∗ −0.00525∗

(0.000 23) (0.000 23) (0.000 23) (0.000 23)
|∆βSMB

i,j,t−1| −0.00327∗ −0.00331∗ −0.00331∗ −0.00329∗

(0.000 17) (0.000 17) (0.000 17) (0.000 17)
|∆βHML

i,j,t−1| −0.00654∗ −0.00659∗ −0.00659∗ −0.00657∗

(0.000 27) (0.000 27) (0.000 27) (0.000 27)
|∆FLOWij,t| −0.00110∗

(0.000 08)
|FLOWi,t| 0.00013

(0.000 08)
|FLOWj,t| 0.00022∗

(0.000 07)
CAPi,j,t −0.00010

(0.000 08)
|∆CREATIONi,j,t| −0.00077∗

(0.000 07)

are presented in Table 4. All specifications include controls for the absolute
difference in the midquotes of stocks i and j on trading day t − 1, 5-minute
midquote return volatilities for stocks i and j on trading day t − 1, and linear
as well as nonlinear characteristics controls.

Comparing the results with the results for differences in the Fama and French
(1993) betas only (Table 3) reveals that the main findings are unchanged.
Larger absolute differences in the factor betas are associated with lower daily
pricing error correlations. This holds for both the full sample results as well as
the results for high-market capitalization stocks.

For the full-sample results, the signs of the coefficients on measures of (differ-
ences in) stock exposure to ETF ownership are in line with the hypotheses that
emerge from the literature: common ETF ownership as well as absolute flows
from ETFs into stocks i and j are associated with higher pricing error correla-
tions. Larger differences in the exposure to ETF flows and ETF creations and
redemptions are associated with lower pricing error correlations. Comparing the
economic magnitudes of the coefficients of the differences in factor betas and
and the exposure to ETF ownership reveals that the effect of ETF ownership is
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in general an order of magnitude smaller than the effect of differences in factor
betas.

For high-market capitalization stocks only, the signs of the coefficients on
the measures of (differences in) stock exposure to ETF ownership are again in
line with the hypotheses that emerge from the literature, except for common
ownership (CAPi,j,t). However, the effect of common ownership is insignificant
at all conventional significance levels and the point estimate is economically
small, constituting a precise zero. At the same time, I find a relatively stronger
negative effect of the difference in exposures of stocks i and j to ETF flows
(|∆FLOWij,t|). In comparison to the full sample results, the coefficient on
|∆FLOWij,t| is at least an order of magnitude larger. A possible explanation
for this is that the large stocks in my sample are more common constituents of
widely traded ETFs.

In addition, this result suggests the following: When analyzing the effect of
ETF ownership at high (intraday) frequencies, it is not ETF ownership per se
that drives prices. Rather, flows resulting from ETF ownership drive prices and
pricing errors. This is intuitive as market makers/liquidity providers observe and
react to the flows they observe, rather than to holdings by market participants
(this is the case in inventory models as my model in Section 2 as well as in
adverse-selection models such as Kyle (1985) and Glosten and Milgrom (1985)
). Moreover, this is consistent with the result in Antón and Polk (2014) that
common ownership is more relevant in periods of high (absolute) flows.

If the effect I document in Section 5.2 was solely driven by a liquidity demand
channel rather than liquidity supply as in the theoretical model in Section 2,
I expect the coefficients on the measures of (differences in) stock exposure to
ETF ownership to be of at least a similar magnitude as the coefficients on the
differences in the factor betas. In addition, I expect the size of the coefficients
on the differences in factor betas to decrease. This is neither the case in the full
sample results, nor in the high-market capitalization sample results.

Rather, my results suggest that intraday pricing errors as well as their daily
correlations are driven by both liquidity supply as well as liquidity demand
channels, with the economic effect of a liquidity supply channel being economi-
cally larger. With this I complement the literature that shows that correlations
in daily liquidity metrics are driven by ETF ownership, and therefore liquid-
ity demand (Agarwal et al., 2018). In this context, it should also be noted
that I estimate my state space model which yields estimates of pricing errors
on a stock-day level. By construction, this does not allow me to identify long-
lasting pricing errors. At the same time, estimating the state space model on
the stock-day level alleviates concerns that my results capture a mechanical re-
lationship between pricing error correlations and the explanatory variables in
my regressions over multiple days.

Bogousslavsky and Muravyev (2023) document an increase in trading during
closing auctions related to the increasingly important role of ETFs in today’s
financial market architecture. Hendershott and Menkveld (2014) find price
pressures in closing prices as a result of specialist inventory positions. My
findings complement these results for higher frequencies. With this, I also relate
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to the literature studying the impact of common fund and ETF ownership on
correlations of lower-frequency liquidity metrics and factor residuals (Antón and
Polk, 2014; Agarwal et al., 2018).

5.4 Robustness Checks

I investigate the robustness of my results along several dimensions. In Appendix
A, I present the results from robustness checks showing the robustness of my
findings to additional factor model specifications. In addition to the Fama and
French (1993) factors considered in the main analysis, I consider the Fama
and French (1993) –Carhart (1997), the Fama and French (2015), and the He,
Kelly, and Manela (2017) factors.4 The results are consistent across all factor
models. More similar factor loadings are associated with higher pricing error
correlations. In addition, results are stronger in the sample of high-market
capitalization stocks.

Next, I investigate the possibility that my results are driven by noise in
high-frequency TAQ data due to exchange-to-SIP latency (Holden, Pierson, and
Wu, 2023). Therefore, I re-estimate my state space model based on data that
has been cleaned using the latency adjustment procedure of Holden, Pierson,
and Wu (2023) rather than the Holden and Jacobsen (2014) algorithm. De-
tailed results are presented in Appendix B. Comparing the main results with the
exchange-to-SIP latency-adjusted results reveals quantitatively similar results.

Stocks may be similar and their pricing errors be correlated due to industry
similarity rather than due to the underlying risk factor structure. I explore this
channel in Appendix C. Following Antón and Polk (2014), I capture a stock
pair’s industry similarity by the number of of equal consecutive SIC digits,
starting from the first digit. While I find that a higher degree of of industry
similarity is associated with higher pricing error correlations, the relationship
between differences in factor betas and pricing error correlations is robust to
controlling for industry similarity. This suggest that the relationship I uncover
is distinct from industry similarity.

Finally, I shed light on the possibility that my results are driven by a dif-
ferences in market volatility in Appendix D. Therefore, consider differences in
daily coefficients between high- and low volatility periods. I define high-volatility
(low-volatility) periods as trading days when the VIX closes in the top (bottom)
three deciles of its sample distribution. The results provide only mixed evidence
for variation in daily coefficients with market volatility. In line with the predic-
tions of the theoretical model in Section 2, I can reject the null hypothesis that
the relationship between pricing error correlations and absolute differences in
factor betas turns positive for any of the sub-periods. At the same time, these
results suggest that my results are not driven by high- or low market volatility
periods.

4Moreover, including the He, Kelly, and Manela (2017) factor captures differences in
intermediary risk capacity as dealers’ cost of liquidity provision increases as their risk capacity
decreases (Huang et al., 2023).
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6 Conclusions

Motivated by an inventory model I study pricing errors in the cross-section of
stocks. In a setting in which prices are a function of risk factors, theory predicts
that pricing errors of different securities are correlated if they load on the same
underlying risk factors. Using a state space model, I identify pricing errors at a
1-minute frequency and compute correlations in pricing errors for stock pairs for
each trading day. My results indicate that absolute differences in factor betas are
negatively related to correlations in pricing errors. The effect is economically
meaningful and robust to controlling for differences in the microstructure of
trading and several stock characteristics.

In addition to this liquidity supply channel, I investigate the role of liquidity
demand. I study the relationship between pricing error correlations and liquidity
demanding flows from ETFs, as well as ETF ownership. While my results
reveal a null result for the relationship between common ownership by ETFs
and pricing error correlations, I find that ETF flows contribute to pricing error
correlations in the cross section of stocks. These channels co-exist with the
liquidity supply channel and are generally smaller in magnitude.

My results reveal systematic drivers of price efficiency in the cross-section
of stocks. This adds to the literature showing that market wide risks drive
inventory effects in stocks (Conrad and Wahal, 2020).
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A Cross-Sectional Results with Additional Fac-
tors

In this Section I present additional results for different factor models. Table
5 presents results for the Fama and French (1993) – Carhart (1997), Table 6
presents results for the Fama and French (2015) factors, and Table 7 presents
results for the He, Kelly, and Manela (2017) as well as the market factor. As
before, I report results for the full sample as well as high-market capitalization
stocks only.

Comparing with the results for the Fama and French (1993) factors shows
consistent results. As before, the results are stronger for high-market capitaliza-
tion stocks only, compared to the full sample results. This alleviates the concern
that the results are driven by small, irregularly traded stocks. In addition, dif-
ferences in market betas consistently appear to be the most important driver of
differences in daily pricing error correlations. The economic magnitude of dif-
ferences in the additional factors (UMD, RMW , and CMA) is overall smaller
than the magnitude of differences in the Fama and French (1993) factors. Es-
pecially the CMA factor appears to have little traction in the overall sample.
In the high-market capitalization sample, however, the coefficients on the CMA
factor are in line with the intuition of the theoretical model presented in Section
2.

The He, Kelly, and Manela (2017) factor appears highly significant across
all specifications. Moreover, its economic magnitude is sizeable, especially in the
sample of high market capitalization stocks. As the factor captures intermediary
capital, this lends additional evidence in favor of the hypothesis that the liquidity
supplying side influences co-movement in pricing errors.
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Table 5: Cross-Sectional Results for Pricing Error Correlations for Fama and
French (1993) – Carhart (1997) Factors

This table reports Fama and MacBeth (1973) estimates of daily cross-sectional re-
gressions for correlations in pricing errors and Fama and French (1993) – Carhart
(1997) factors. Pricing errors are obtained as smoothed states from estimating the
state space model on the stock-day level. All independent variables are standard-
ized to facilitate economic interpretability. ρxi,j,t is the correlation in the signed order
flow series, |∆βM

i,j,t−1| is the absolute difference in the market betas of stocks i and
j, obtained from a factor regression using the last 500 available return observations.
Similarly, |∆βSMB

i,j,t−1| is the absolute difference in the SMB betas, |∆βHML
i,j,t−1| is the

absolute difference in the HML betas, and |∆βUMD
i,j,t−1| is the absolute difference in the

UMD (momentum) betas of stocks in i and j. |∆mt−1| is the absolute difference in
the midquotes of stocks i and j on trading day t−1, and σ(r5min

i,t−1) as well σ(r
5min
j,t−1) are

the 5-minute midquote return volatilities for stocks i and j on trading day t− 1. The
specifications that control for linear and nonlinear characteristics include the (stan-
dardized) factor betas as well as squared terms of the factor betas for stocks i and j.
I report Newey and West (1987) standard errors robust to autocorrelation of up to
20 lags in the cross-sectional estimates. Standard errors are reported in parentheses.
∗ denotes significance at the 1% level.

Panel A: Full Sample

(1) (2) (3) (4)

Constant 0.01908∗ 0.01932∗ 0.01929∗ 0.01437∗

(0.000 74) (0.000 76) (0.000 76) (0.000 77)
ρxi,j,t 0.00868∗ 0.00296∗ 0.00289∗ 0.00262∗

(0.001 01) (0.000 07) (0.000 07) (0.000 06)
|∆βM

i,j,t−1| −0.00227∗ −0.00211∗ −0.00238∗

(0.000 11) (0.000 10) (0.000 09)
|∆βSMB

i,j,t−1| −0.00169∗ −0.00154∗ −0.00198∗

(0.000 09) (0.000 09) (0.000 08)
|∆βHML

i,j,t−1| −0.00042 −0.00017 −0.00342∗

(0.000 17) (0.000 17) (0.000 15)
|∆βUMD

i,j,t−1| 0.00004 0.00039∗ −0.00093∗

(0.000 06) (0.000 07) (.000 07)
|∆mt−1| −0.00083∗ −0.00066∗

(0.000 06) (0.000 04)
σ(r5min

i,t−1 ) −0.00174∗ −0.00248∗

(0.000 13) (0.000 10)
σ(r5min

j,t−1) −0.00170∗ −0.00239∗

(0.000 11) (0.000 10)

Linear characteristics No No No Yes
Nonlinear characteristics No No No Yes
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Table 5: – continued

Panel B: High Market Capitalization

(1) (2) (3) (4)

Constant 0.02726∗ 0.02726∗ 0.02726∗ 0.01796∗

(0.001 24) (0.001 24) (0.001 24) (0.001 39)
ρxi,j,t 0.00310∗ 0.00288∗ 0.00286∗ 0.00261∗

(0.000 08) (0.000 08) (0.000 08) (0.000 07)
|∆βM

i,j,t−1| −0.00423∗ −0.00431∗ −0.00542∗

(0.000 19) (0.000 19) (0.000 21)
|∆βSMB

i,j,t−1| −0.00235∗ −0.00232∗ −0.00318∗

(0.000 12) (0.000 13) (0.000 17)
|∆βHML

i,j,t−1| −0.00157∗ −0.00152∗ −0.00659∗

(0.000 28) (0.000 29) (0.000 26)
|∆βUMD

i,j,t−1| −0.00130∗ −0.00117∗ −0.00239∗

(0.000 15) (0.000 14) (0.000 16)
|∆mt−1| −0.00054∗ −0.00061∗

(0.000 09) (0.000 09)
σ(r5min

i,t−1 ) −0.00008 −0.00256∗

(0.000 16) (0.000 16)
σ(r5min

j,t−1) −0.00052∗ −0.00258∗

(0.000 15) (0.000 14)

Linear characteristics No No No Yes
Nonlinear characteristics No No No Yes
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Table 6: Cross-Sectional Results for Pricing Error Correlations for Fama and
French (2015) Factors

This table reports Fama and MacBeth (1973) estimates of daily cross-sectional regres-
sions for correlations in pricing errors and Fama and French (2015) factors. Pricing
errors are obtained as smoothed states from estimating the state space model on the
stock-day level. All independent variables are standardized to facilitate economic in-
terpretability. ρxi,j,t is the correlation in the signed order flow series, |∆βM

i,j,t−1| is the
absolute difference in the market betas of stocks i and j, obtained from a factor regres-
sion using the last 500 available return observations. Similarly, |∆βSMB

i,j,t−1|, |∆βHML
i,j,t−1|,

|∆βRMW
i,j,t−1|, and |∆βCMA

i,j,t−1| are the absolute difference in the SMB, HML, RMW , and
CMA betas of stocks in i and j, respectively. |∆mt−1| is the absolute difference in the
midquotes of stocks i and j on trading day t − 1, and σ(r5min

i,t−1) as well σ(r5min
j,t−1) are

the 5-minute midquote return volatilities for stocks i and j on trading day t− 1. The
specifications that control for linear and nonlinear characteristics include the (stan-
dardized) factor betas as well as squared terms of the factor betas for stocks i and j.
I report Newey and West (1987) standard errors robust to autocorrelation of up to
20 lags in the cross-sectional estimates. Standard errors are reported in parentheses.
∗ denotes significance at the 1% level.

Panel A: Full Sample

(1) (2) (3) (4)

Constant 0.01908∗ 0.01932∗ 0.01930∗ 0.01335∗

(0.000 74) (0.000 76) (0.000 76) (0.000 75)
ρxi,j,t 0.00868∗ 0.00297∗ 0.00291∗ 0.00261∗

(0.001 01) (0.000 07) (0.000 07) (0.000 06)
|∆βM

i,j,t−1| −0.00213∗ −0.00191∗ −0.00217∗

(0.000 11) (0.000 10) (0.000 10)
|∆βSMB

i,j,t−1| −0.00164∗ −0.00149∗ −0.00203∗

(0.000 08) (0.000 08) (0.000 07)
|∆βHML

i,j,t−1| −0.00020 −0.00006 −0.00359∗

(0.000 13) (0.000 13) (0.000 14)
|∆βRMW

i,j,t−1| −0.00050∗ −0.00002 −0.00115∗

(0.000 08) (0.000 06) (0.000 05)
|∆βCMA

i,j,t−1| 0.00020∗ 0.00017∗ −0.00103∗

(0.000 06) (0.000 06) (0.000 06)
|∆mt−1| −0.00083∗ −0.00063∗

(0.000 07) (0.000 04)
σ(r5min

i,t−1 ) −0.00171∗ −0.00249∗

(0.000 12) (0.000 10)
σ(r5min

j,t−1) −0.00166∗ −0.00240∗

(0.000 11) (0.000 10)

Linear characteristics No No No Yes
Nonlinear characteristics No No No Yes
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Table 6: – continued

Panel B: High Market Capitalization

(1) (2) (3) (4)

Constant 0.02726∗ 0.02726∗ 0.02726∗ 0.01702∗

(0.001 24) (0.001 24) (0.001 24) (0.001 38)
ρxi,j,t 0.00310∗ 0.00289∗ 0.00287∗ 0.00259∗

(0.000 08) (0.000 08) (0.000 08) (0.000 07)
|∆βM

i,j,t−1| −0.00390∗ −0.00395∗ −0.00448∗

(0.000 21) (0.000 21) (0.000 25)
|∆βSMB

i,j,t−1| −0.00189∗ −0.00185∗ −0.00289∗

(0.000 12) (0.000 12) (0.000 15)
|∆βHML

i,j,t−1| −0.00107∗ −0.00108∗ −0.00669∗

(0.000 24) (0.000 23) (0.000 26)
|∆βRMW

i,j,t−1| −0.00182∗ −0.00174∗ −0.00233∗

(0.000 19) (0.000 17) (0.000 12)
|∆βCMA

i,j,t−1| −0.00084∗ −0.00080∗ −0.00311∗

(0.000 13) (0.000 13) (0.000 16)
|∆mt−1| −0.00059∗ −0.00066∗

(0.000 08) (0.000 08)
σ(r5min

i,t−1 ) −0.00007 −0.00240∗

(0.000 15) (0.000 14)
σ(r5min

j,t−1) −0.00047∗ −0.00255∗

(0.000 14) (0.000 14)

Linear characteristics No No No Yes
Nonlinear characteristics No No No Yes
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Table 7: Cross-Sectional Results for Pricing Error Correlations for He, Kelly,
and Manela (2017) Factor

This table reports Fama and MacBeth (1973) estimates of daily cross-sectional regres-
sions for correlations in pricing errors and the He, Kelly, and Manela (2017) factor
as well as the market factor. Pricing errors are obtained as smoothed states from
estimating the state space model on the stock-day level. All independent variables
are standardized to facilitate economic interpretability. ρxi,j,t is the correlation in the
signed order flow series, |∆βM

i,j,t−1| is the absolute difference in the market betas of
stocks i and j, obtained from a factor regression using the last 500 available return
observations. Similarly, |∆βHKM

i,j,t−1|, is the absolute difference in the He, Kelly, and
Manela (2017) factor betas of stocks in i and j, respectively. |∆mt−1| is the absolute
difference in the midquotes of stocks i and j on trading day t−1, and σ(r5min

i,t−1) as well
σ(r5min

j,t−1) are the 5-minute midquote return volatilities for stocks i and j on trading day
t − 1. The specifications that control for linear and nonlinear characteristics include
the (standardized) factor betas as well as squared terms of the factor betas for stocks
i and j. I report Newey and West (1987) standard errors robust to autocorrelation of
up to 20 lags in the cross-sectional estimates. Standard errors are reported in paren-
theses. ∗ denotes significance at the 1% level.

Panel A: Full Sample

(1) (2) (3) (4)

Constant 0.01908∗ 0.01932∗ 0.01930∗ 0.01544∗

(0.000 74) (0.000 76) (0.000 76) (0.000 76)
ρxi,j,t 0.00868∗ 0.00302∗ 0.00295∗ 0.00272∗

(0.001 01) (0.000 07) (0.000 07) (0.000 06)
|∆βM

i,j,t−1| −0.00123∗ −0.00079∗ −0.00204∗

(0.000 09) (0.000 08) (0.000 09)
|∆βHKM

i,j,t−1| −0.00051∗ −0.00048∗ −0.00330∗

(0.000 15) (0.000 14) (0.000 13)
|∆mt−1| −0.00101∗ −0.00081∗

(0.000 06) (0.000 06)
σ(r5min

i,t−1 ) −0.00168∗ −0.00308∗

(0.000 12) (0.000 14)
σ(r5min

j,t−1) −0.00176∗ −0.00292∗

(0.000 11) (0.000 13)

Linear characteristics No No No Yes
Nonlinear characteristics No No No Yes
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Table 7: – continued

Panel B: High Market Capitalization

(1) (2) (3) (4)

Constant 0.02726∗ 0.02726∗ 0.02726∗ 0.02016∗

(0.001 24) (0.001 24) (0.001 24) (0.001 32)
ρxi,j,t 0.00310∗ 0.00300∗ 0.00297∗ 0.00271∗

(0.000 08) (0.000 08) (0.000 08) (0.000 08)
|∆βM

i,j,t−1| −0.00244∗ −0.00227∗ −0.00413∗

(0.000 17) (0.000 18) (0.000 19)
|∆βHKM

i,j,t−1| −0.00187∗ −0.00188∗ −0.00743∗

(0.000 20) (0.000 20) (0.000 32)
|∆mt−1| −0.00034∗ −0.00047∗

(0.000 08) (0.000 09)
σ(r5min

i,t−1 ) −0.00024 −0.00313∗

(0.000 15) (0.000 17)
σ(r5min

j,t−1) −0.00109∗ −0.00312∗

(0.000 15) (0.000 16)

Linear characteristics No No No Yes
Nonlinear characteristics No No No Yes

B Latency Adjustment

When working with high-frequency data, the latency at which the data are
recorded may influence results. Holden, Pierson, and Wu (2023) show that
accounting for the exchange-to-SIP latency improves the performance of the Lee
and Ready (1991) algorithm for trade classification. In light of these results, I
explore in this Section whether my results may be driven by noise introduced by
the exchange-to-SIP latency. As my state space model identifies pricing errors as
well as efficient price innovations using signed aggregate trade flow (see Section
3.1 for details), noise in trade signing may carry over to the identification of
pricing errors. Moreover, my methodology relies on the prevailing midquote
series. This is another potential source of variation once I account for the
exchange-to-SIP latency.

To account for this channel, I implement the latency-adjusted procedure
proposed by Holden, Pierson, and Wu (2023) rather than the Holden and Ja-
cobsen (2014) algorithm. Based on this, I re-estimate the state space model,
obtain pricing error series relative to the latency-adjusted midquote series, and
re-estimate my cross-sectional Fama and MacBeth (1973) regressions for corre-
lations in daily pricing errors. Results for the Fama and French (1993) factor
betas are presented in Table 8. Comparing with my main results presented in
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Table 3 reveals robust findings. All results presented in Section 5.2 carry over
when performing the analysis based on latency-adjusted data. Moreover, results
are also quantitatively highly robust, with the coefficients reported in Table 8
generally being within the margin of error of the coefficients reported in Table
3. This alleviates the concern that my results are driven by noise in the data,
caused by the exchange-to-SIP latency.
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Table 8: Latency-Adjusted Cross-Sectional Results for Pricing Error Correla-
tions

This table reports Fama and MacBeth (1973) estimates of daily cross-sectional re-
gressions for correlations in pricing errors:

ρsij,t = a+ b0ρ
x
ij,t + b1|∆βM

ij,t−1|+ b2|∆βSMB
ij,t−1|+ b3|∆βHML

ij,t−1|+Xγ + εij,t.
The analysis follows the steps in the main section, with the difference that the TAQ
data for the results presented here is cleaned based on the latency-adjusted procedure
of Holden, Pierson, and Wu (2023) rather than the Holden and Jacobsen (2014) algo-
rithm. Pricing errors are obtained as smoothed states from estimating the state space
model on the stock-day level. All independent variables are standardized to facili-
tate economic interpretability. ρxi,j,t is the correlation in the signed order flow series,
|∆βM

i,j,t−1| is the absolute difference in the market betas of stocks i and j, obtained
from a factor regression using the last 500 available return observations. Similarly,
|∆βSMB

i,j,t−1| is the absolute difference in the SMB betas, and |∆βHML
i,j,t−1| is the absolute

difference in the HML betas of stocks in i and j. |∆mt−1| is the absolute difference in
the midquotes of stocks i and j on trading day t−1, and σ(r5min

i,t−1) as well σ(r
5min
j,t−1) are

the 5-minute midquote return volatilities for stocks i and j on trading day t− 1. The
specifications that control for linear and nonlinear characteristics include the (stan-
dardized) factor betas as well as squared terms of the factor betas for stocks i and j.
I report Newey and West (1987) standard errors robust to autocorrelation of up to
20 lags in the cross-sectional estimates. Standard errors are reported in parentheses.
∗ denotes significance at the 1% level.

Panel A: Full Sample

(1) (2) (3) (4)

Constant 0.01962∗ 0.01973∗ 0.01971∗ 0.01529∗

(0.000 74) (0.000 74) (0.000 74) (0.000 74)
ρxi,j,t 0.00439∗ 0.00426∗ 0.00416∗ 0.00375∗

(0.000 10) (0.000 10) (0.000 09) (0.000 08)
|∆βM

i,j,t−1| −0.00208∗ −0.00191∗ −0.00230∗

(0.00011 (0.00010 (0.00009
|∆βSMB

i,j,t−1| −0.00158∗ −0.00142∗ −0.00205∗

(0.000 08) (0.000 08) (0.000 07)
|∆βHML

i,j,t−1| −0.00047∗ −0.00017 −0.00350∗

(0.000 18) (0.000 19) (0.000 15)
|∆mt−1| −0.00071∗ −0.00055∗

(0.000 06) (0.000 04)
σ(r5min

i,t−1 ) −0.00156∗ −0.00250∗

(0.000 13) (0.000 09)
σ(r5min

j,t−1) −0.00155∗ −0.00239∗

(0.000 11) (0.000 09)

Linear characteristics No No No Yes
Nonlinear characteristics No No No Yes
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Table 8: – continued

Panel B: High Market Capitalization

(1) (2) (3) (4)

Constant 0.02759∗ 0.02759∗ 0.02758∗ 0.01948∗

(0.001 24) (0.001 24) (0.001 24) (0.001 34)
ρxi,j,t 0.00442∗ 0.00412∗ 0.00408∗ 0.00374∗

(0.000 11) (0.000 10) (0.000 10) (0.000 09)
|∆βM

i,j,t−1| −0.00400∗ −0.00409∗ −0.00506∗

(0.000 19) (0.000 19) (0.000 21)
|∆βSMB

i,j,t−1| −0.00244∗ −0.00239∗ −0.00339∗

(0.000 12) (0.000 13) (0.000 17)
|∆βHML

i,j,t−1| −0.00201∗ −0.00199∗ −0.00646∗

(0.000 26) (0.000 28) (0.000 27)
|∆mt−1| −0.00034∗ −0.00037∗

(0.000 09) (0.000 08)
σ(r5min

i,t−1 ) −0.00010 −0.00266∗

(0.000 18) (0.000 14)
σ(r5min

j,t−1) −0.00047∗ −0.00264∗

(0.000 16) (0.000 13)

Linear characteristics No No No Yes
Nonlinear characteristics No No No Yes

C Industry Similarity

Stocks may be similar and their prices co-vary because they load on the same
underlying risk factors. However, this may also be driven by industry similarity.
Also, investors may invest in a specific industry (Antón and Polk, 2014), causing
their liquidity demand to be correlated and potentially inducing correlation in
pricing errors. To investigate this channel, I follow Antón and Polk (2014)
and capture industry similarity for a stock pair i, j as the number of equal
consecutive SIC digits, starting from the first digit (NUMSICi,j,t). As before,
I standardize the measure to facilitate economic interpretation.

Results for the full sample as well as high market capitalization stocks are
presented in Table 9. As expected, industry similarity (i.e., an increase in
the number of similar SIC code digits) is associated with higher pricing error
correlations. The effect is economically relevant and significant. At the same
time, the effect of differences in factor betas remains significant, even when
controlling for industry similarity. As in the main results presented in Section
5, differences in factor betas have a larger effect on pricing error correlations
among high-market capitalization stocks. Overall, these results provide evidence
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that the relationship I uncover between pricing error correlations and similarities
in factor loadings is distinct from industry similarity.
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Table 9: Cross-Sectional Results for Pricing Error Correlations with Controls
for Industry Similarity

This table reports Fama and MacBeth (1973) estimates of daily cross-sectional re-
gressions for correlations in pricing errors:

ρsij,t = a+ b0ρ
x
ij,t + b1|∆βM

ij,t−1|+ b2|∆βSMB
ij,t−1|+ b3|∆βHML

ij,t−1|+Xγ + εij,t.
Pricing errors are obtained as smoothed states from estimating the state space model
on the stock-day level. All independent variables are standardized to facilitate eco-
nomic interpretability. ρxi,j,t is the correlation in the signed order flow series, |∆βM

i,j,t−1|
is the absolute difference in the market betas of stocks i and j, obtained from a factor
regression using the last 500 available return observations. Similarly, |∆βSMB

i,j,t−1| is the
absolute difference in the SMB betas, and |∆βHML

i,j,t−1| is the absolute difference in the
HML betas of stocks in i and j. NUMSICi,j,t captures industry similarity by the
number of equal SIC code digits, starting from the first digit. |∆mt−1| is the absolute
difference in the midquotes of stocks i and j on trading day t−1, and σ(r5min

i,t−1) as well
σ(r5min

j,t−1) are the 5-minute midquote return volatilities for stocks i and j on trading day
t − 1. The specifications that control for linear and nonlinear characteristics include
the (standardized) factor betas as well as squared terms of the factor betas for stocks
i and j. I report Newey and West (1987) standard errors robust to autocorrelation of
up to 20 lags in the cross-sectional estimates. Standard errors are reported in paren-
theses. ∗ denotes significance at the 1% level.

Panel A: Full Sample

(1) (2) (3) (4)

Constant 0.01908∗ 0.01932∗ 0.01930∗ 0.01525∗

(0.000 74) (0.000 76) (0.000 76) (0.000 76)
ρxi,j,t 0.00868∗ 0.00293∗ 0.00287∗ 0.00263∗

(0.001 01) (0.000 07) (0.000 07) (0.000 06)
|∆βM

i,j,t−1| −0.00208∗ −0.00190∗ −0.00225∗

(0.000 11) (0.000 10) (0.000 09)
|∆βSMB

i,j,t−1| −0.00156∗ −0.00138∗ −0.00200∗

(0.000 08) (0.000 08) (0.000 07)
|∆βHML

i,j,t−1| −0.00034 0.00000 −0.00312∗

(0.000 18) (0.000 18) (0.000 15)
NUMSICi,j,t 0.00227∗ 0.00229∗ 0.00175∗

(0.000 05) (0.000 05) (0.000 05)
|∆mt−1| −0.00077∗ −0.00063∗

(0.000 06) (0.000 04)
σ(r5min

i,t−1 ) −0.00167∗ −0.00253∗

(0.000 13) (0.000 10)
σ(r5min

j,t−1) −0.00170∗ −0.00244∗

(0.000 11) (0.000 10)

Linear characteristics No No No Yes
Nonlinear characteristics No No No Yes
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Table 9: – continued

Panel B: High Market Capitalization

(1) (2) (3) (4)

Constant 0.02726∗ 0.02726∗ 0.02726∗ 0.02022∗

(0.001 24) (0.001 24) (0.001 24) (0.001 35)
ρxi,j,t 0.00310∗ 0.00278∗ 0.00276∗ 0.00256∗

(0.000 08) (0.000 08) (0.000 08) (0.000 07)
|∆βM

i,j,t−1| −0.00382∗ −0.00391∗ −0.00474∗

(0.000 19) (0.000 19) (0.000 21)
|∆βSMB

i,j,t−1| −0.00241∗ −0.00234∗ −0.00314∗

(0.000 12) (0.000 13) (0.000 17)
|∆βHML

i,j,t−1| −0.00169∗ −0.00163∗ −0.00578∗

(0.000 27) (0.000 28) (0.000 27)
NUMSICi,j,t 0.00460∗ 0.00459∗ 0.00390∗

(0.000 17) (0.000 17) (0.000 15)
|∆mt−1| −0.00046∗ −0.00050∗

(0.000 09) (0.000 08)
σ(r5min

i,t−1 ) −0.00010 −0.00258∗

(0.000 17) (0.000 14)
σ(r5min

j,t−1) −0.00059∗ −0.00263∗

(0.000 15) (0.000 14)

Linear characteristics No No No Yes
Nonlinear characteristics No No No Yes

D Differences by Market Volatility

As market volatility changes, pricing error correlations as well as their inter-
action with factor loadings may change as well. This channel is distinct from
variation in pricing error correlations as a result of volatilities in the individual
securities. I control for the latter channel by including 5-minute return volatil-
ities for each stock in all specifications. In this Section I investigate the first
channel.

I use differences in VIX closing prices to capture differences in market volatil-
ity. Over my sample period, I classify days on which VIX closing prices were in
the top three deciles of its distribution over my sample period as high-volatility
days. Conversely, I classify days on which VIX closing prices were in the bottom
three deciles of its distribution over my sample period as low-volatility days.
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Building on daily cross-sectional regressions as in the main analysis

ρsij,t = a+ b0ρ
x
ij,t + b1|∆βM

ij,t−1|+ b2|∆βSMB
ij,t−1|

+ b3|∆βHML
ij,t−1|+Xγ + εij,t,

I investigate whether there is systemic variation in the time series of daily coef-
ficients with respect to market volatility. Results are presented in Table 10.

The results lend only mixed evidence for variation in daily coefficients with
market volatility. There is some evidence consistent with variation between
high- and low volatility periods for absolute differences in market betas and SMB
betas. Also, I can reject the null hypothesis that the relationship between pricing
error correlations and absolute differences in the factor betas turns positive for
any of the specifications. This is in line with the theoretical predictions of the
model in Section 2 which predicts a negative relationship between differences in
factor betas and pricing error correlations. In addition, the results in Table 10
suggest that my results are neither driven by high- or low-volatility periods.
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Table 10: Differences by Market Volatility in Cross-Sectional Results for Pricing
Error Correlations

This table reports Fama and MacBeth (1973) estimates of daily cross-sectional re-
gressions for correlations in pricing errors:

ρsij,t = a+ b0ρ
x
ij,t + b1|∆βM

ij,t−1|+ b2|∆βSMB
ij,t−1|+ b3|∆βHML

ij,t−1|+Xγ + εij,t.
Pricing errors are obtained as smoothed states from estimating the state space model
on the stock-day level. All independent variables are standardized to facilitate eco-
nomic interpretability. ρxi,j,t is the correlation in the signed order flow series, |∆βM

i,j,t−1|
is the absolute difference in the market betas of stocks i and j, obtained from a factor
regression using the last 500 available return observations. Similarly, |∆βSMB

i,j,t−1| is the
absolute difference in the SMB betas, and |∆βHML

i,j,t−1| is the absolute difference in the
HML betas of stocks in i and j. |∆mt−1| is the absolute difference in the midquotes
of stocks i and j on trading day t− 1, and σ(r5min

i,t−1) as well σ(r
5min
j,t−1) are the 5-minute

midquote return volatilities for stocks i and j on trading day t− 1. The specifications
that control for linear and nonlinear characteristics include the (standardized) factor
betas as well as squared terms of the factor betas for stocks i and j. HIGHV IX is
an indicator referring to trading days on which the VIX is in the top three deciles of
its distribution over my sample period. LOWV IX is an indicator referring to trading
days on which the VIX is in the bottom three deciles of its distribution over my sample
period. I report Newey and West (1987) standard errors robust to autocorrelation of
up to 20 lags in the cross-sectional estimates. Standard errors are reported in paren-
theses. ∗ denotes significance at the 1% level.
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Table 10: – continued

Panel A: Full Sample

(1) (2) (3) (4)

Constant 0.01908∗ 0.01932∗ 0.01930∗ 0.0149∗1
(0.000 74) (0.000 76) (0.000 76) (0.000 76)

ρxi,j,t 0.00868∗ 0.00296∗ 0.00290∗ 0.00265∗

(0.001 01) (0.000 07) (0.000 07) (0.000 06)
|∆βM

i,j,t−1| −0.00231∗ −0.00214∗ −0.00263∗

(0.000 15) (0.000 14) (0.000 13)
|∆βM

i,j,t−1| ∗HIGHV IX 0.00029 0.00028 0.00060∗

(0.000 24) (0.000 22) (0.000 21)
|∆βM

i,j,t−1| ∗ LOWV IX 0.00029 0.00029 0.00044∗

(0.000 18) (0.000 16) (0.000 15)
|∆βSMB

i,j,t−1| −0.00189∗ −0.00175∗ −0.00235∗

(0.000 11) (0.000 10) (0.000 10)
|∆βSMB

i,j,t−1| ∗HIGHV IX 0.00076∗ 0.00081∗ 0.00033
(0.000 17) (0.000 16) (0.000 16)

|∆βSMB
i,j,t−1| ∗ LOWV IX 0.00009 0.00020 0.00061∗

(0.000 11) (0.000 10) (0.000 12)
|∆βHML

i,j,t−1| −0.00058 −0.00024 −0.00376∗

(0.000 30) (0.000 31) (0.000 22)
|∆βHML

i,j,t−1| ∗HIGHV IX −0.00029 −0.00017 0.00049
(0.000 41) (0.000 42) (0.000 33)

|∆βHML
i,j,t−1| ∗ LOWV IX 0.00046 0.00033 0.00037

(0.000 32) (0.000 33) (0.000 28)
|∆mt−1| −0.00078∗ −0.00063∗

(0.000 06) (0.000 04)
σ(r5min

i,t−1 ) −0.00167∗ −0.00256∗

(0.000 13) (0.000 10)
σ(r5min

j,t−1) −0.00166∗ −0.00245∗

(0.000 11) (0.000 10)

Linear characteristics No No No Yes
Nonlinear characteristics No No No Yes
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Table 10: – continued

Panel B: High Market Capitalization

(1) (2) (3) (4)

Constant 0.02726∗ 0.02726∗ 0.02726∗ 0.01918∗

(0.001 24) (0.001 24) (0.001 24) (0.001 36)
ρxi,j,t 0.00310∗ 0.00288∗ 0.00286∗ 0.00263∗

(0.000 08) (0.000 08) (0.000 08) (0.000 08)
|∆βM

i,j,t−1| −0.00480∗ −0.00494∗ −0.00610∗

(0.000 27) (0.000 27) (0.000 32)
|∆βM

i,j,t−1| ∗HIGHV IX 0.00130∗ 0.00139∗ 0.00219∗

(0.000 44) (0.000 44) (0.000 45)
|∆βM

i,j,t−1| ∗ LOWV IX 0.00099∗ 0.00106∗ 0.00062
(0.000 33) (0.000 33) (0.000 38)

|∆βSMB
i,j,t−1| −0.00291∗ −0.00283∗ −0.00385∗

(0.000 15) (0.000 17) (0.000 27)
|∆βSMB

i,j,t−1| ∗HIGHV IX 0.00077∗ 0.00063 0.00095∗

(0.000 28) (0.000 29) (0.000 34)
|∆βSMB

i,j,t−1| ∗ LOWV IX 0.00055∗ 0.00062∗ 0.00084∗

(0.000 18) (0.000 19) (0.000 30)
|∆βHML

i,j,t−1| −0.00217∗ −0.00207∗ −0.00708∗

(0.000 48) (0.000 49) (0.000 45)
|∆βHML

i,j,t−1| ∗HIGHV IX −0.00053 −0.00081 0.00063
(0.000 58) (0.000 59) (0.000 59)

|∆βHML
i,j,t−1| ∗ LOWV IX 0.00065 0.00074 0.00100

(0.000 51) (0.000 54) (0.000 58)
|∆mt−1| −0.00045∗ −0.00049∗

(0.000 09) (0.000 08)
σ(r5min

i,t−1 ) −0.00007 −0.00266∗

(0.000 17) (0.000 14)
σ(r5min

j,t−1) −0.00050∗ −0.00268∗

(0.000 16) (0.000 14)

Linear characteristics No No No Yes
Nonlinear characteristics No No No Yes
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