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Income Disaster Model with Optimal Consumption

Abstract

We propose a continuous-time income disaster model with optimal consumption.

We endogenously determine the stochastic discount factor (SDF) in an incomplete

market caused by income disaster. We then derive optimal consumption decisions

for two types of agents, one who is exposed to income disaster and another who is

not. We find a large incomplete-markets precautionary savings term between the two

agents, which pushes the interest rate down and helps to resolve the risk-free rate

puzzle. Interestingly, with income disaster the equilibrium interest rate is a decreasing

function of risk aversion while the equity premium is an increasing function. Finally,

our model can better match empirical marginal propensities to consume numbers

and explain the low-consumption-high-savings puzzle.

Keywords: Income Disaster, Precautionary Savings, Incomplete Markets, Asset Pricing,

Marginal Propensities to Consume
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1 Introduction

Half of jobs in the world today are susceptible to becoming automated in the future (Frey

and Osborne, 2017). Potentially catastrophic loss of income is ubiquitous as differently

evidenced by extreme events (e.g., the 2008 global financial crisis and the recent COVID-

19 pandemic).1 In particular,

Around one third of jobs in the G20 countries rely directly on the effective

management and sustainability of a healthy environment. Climate change and

other forms of environmental degradation have already caused net negative im-

pacts on jobs and work productivity, and these impacts are expected to become

more pronounced in the coming decades. (International Labour Organization

report, August 2018)

Climate change has driven an increase in concern about forced unemployment caused by

global warming or extreme weather.2 The above quote from the report by the International

Labour Organization (ILO) demonstrates a matter of genuine urgency behind the study of

income disaster. Along this line, this paper investigates how people could be encouraged

to optimally adjust their consumption patterns especially with income disaster.

Considering such catastrophic income shocks triggered by various reasons as stated

1A key insight comes from economic recessions followed by human capital depreciation during long-term

periods of unemployment. During the 2007-2009 Great Recession in the United States, many people expe-

rienced the unprecedented largest reductions in their consumption and unemployment. In the U.S., 44% of

households were found to be unable to pay for an emergency expense of just $400 (Federal Reserve report,

2017), in the European Union, approximately 218 million people are experiencing earnings insecurity and

volatility, thus struggling to ensure that future consumption needs can be met (European Commission

statistics, 2017).
2According to the International Labour Organization report entitled “The employment impact of cli-

mate change adaptation,” 23 million working-life years were lost annually at the global level between 2000

and 2015 as a result of various environment-related hazards (e.g., rainstorms, floods, forest fires and ex-

treme weather). Global warming results in a decrease in labor productivity of jobs in farming, fishing and

forestry, and all those depending upon natural processes.
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above, we propose a continuous-time income disaster model with optimal consumption.3

The model considers a continuous-time endowment economy with a one-time-only large

negative Poisson shock to aggregate output.4 The aggregate output is comprised of aggre-

gate labor earnings and dividends. There are two types of agents who exhibit the constant

relative risk aversion (CRRA) utility preference, one who receives income subject to the

Poisson disaster shock and another who receives income unaffected by the disaster shock.

The assets available for trade in the financial market include a risk-free asset and multiple

risky assets. We endogenously determine the stochastic discount factor (SDF) in an incom-

plete market caused by income disaster.5 We then derive optimal consumption decisions

for the two agents.

We offer three insights helping the asset pricing and consumption/savings literature.

We find a large incomplete-markets precautionary savings term between the two agents,

which pushes the interest rate down and helps to resolve the risk-free rate puzzle. As far

as income risks are concerned, such a precautionary savings motive is obtained only by

income disasters with discrete and jump income shocks. The distinct feature of income

disasters from regular income risks results from that the timing of disastrous income shocks

is not deterministic, so its probability changes in time.6 Concretely, income disaster occurs

3We have established in Section A in Appendix a simple two-period model with a jump-type income

shock and obtained closed-form solutions with the simple quadratic utility function. However, solving

analytically or even numerically the model in multi periods with the constant relative risk aversion utility

function turns out to be a considerable challenge.
4We relax this restrictive modeling assumption in our extension exercise in Section 6 by allowing for

multiple Poisson shocks with time-varying state-dependent intensity.
5It has long been known that market completeness under no arbitrage implies the existence of a unique

SDF and the resulting unique risk-neutral measure. However, when markets are incomplete, the number

of SDFs is infinite, so the set of equivalent martingale measures is also infinite. To price the expected

return on an asset in an incomplete market, this multitude of SDFs must be pruned to one. We find a way

to construct the unique risk-neutral measure with the uniquely determined risk-neutral income disaster

intensity.
6We allow in Section 6 for the timing of income disasters evolves in time even stochastically, leading to

time-varying state-dependent income disasters.
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at an uncertain time, which is assumed to be the first jump time of an independent Poisson

process. This random time of income disaster introduces a new friction into the economy

and has implications for asset pricing.

We find that income risks result in a nonstandard form of market incompleteness es-

pecially when those involve an uncertain time-horizon like income disasters considered in

this paper. Income risks modeled by uninsurable Brownian motions give rise to additional

precautionary savings due to the randomness of labor income levels (labor market risk).

The labor market risk induces in the SDF a new market price component for uninsurable

income risks. However, the new market price of uninsurable income risks operate with

income risks-related Brownian motions only, so it does not involve any adjustment of the

risk-free interest rate in the SDF’s drift term.7 As a result, a regular Brownian-type diffu-

sive and continuous income shock could not generate the substantial precautionary savings

that matter for general equilibrium quantities. In contrast, income disasters modeled by

Poisson shocks give rise to a sufficiently strong demand for optimal savings that reduces

the risk-free rate significantly in equilibrium. The specific timing risk exists with income

disasters in addition to the randomness of labor income levels and it induces in the SDF

a specific form of the market price for income disasters, which alters the drift of the SDF

with adjustments of the risk-free interest rate.8

Second, with income disaster the equilibrium interest rate is a decreasing function of

risk aversion while the equity premium is an increasing function, helping to disentangle the

risk-free rate puzzle from the equity premium puzzle. In the standard CRRA representative

asset pricing models without income disaster, the equilibrium interest rate is typically an

7The equilibrium risk-free interest rate is therefore not altered by unspanned Brownian-type income

risks. This is also known as the irrelevance result by Krueger and Lustig (2010). We confirm this irrelevance

result in our income disaster model by allowing for extra undiversifiable Brownian income risk in Section

6.
8Here, the specific form of the market price refers to the nonstandard form of SDF as compared to

SDFs with respect to market risks. Theorem 3.1 in Section 3 explicitly characterizes such a nonstandard

form of the SDF with respect to income disaster.
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increasing function of risk aversion9 due to the effects of the elasticity of intertemporal

substitution (EIS), as pointed out by Weil (1989).10 Thus, the existing CRRA models pose

serious challenges to match both low risk-free rate and high equity premium simultaneously,

because the equity premium is generally an increasing function of risk aversion. In fact,

the equity premium is still an increasing function of risk aversion in the presence of income

disaster. However, the precautionary savings motive is so strong that for typical parameters

the equilibrium interest rate is a decreasing function of risk aversion, dominating the effects

of the EIS.

Third, the model can better match empirical marginal propensities to consume (MPC)

numbers and explain the low-consumption-high-savings puzzle. The model’s ability with

income disaster to match the MPCs is much better than without income disaster, gener-

ating with just 1% income disaster possibility as high as 8% in some reasonable scenarios

that is two times higher than 4% MPC that most macroeconomic models theoretically

suggest.11

Intuitively, the substantial precautionary savings required by our model with income

disaster allow for large consumption responses to changes in wealth, as opposed to the low

sensitivity of consumption to wealth changes suggested by classical consumption/savings

models. Our equilibrium consumption growth drift is an increasing function of income

9More precisely, the risk-free rate in the absence of income disaster is a quadratic function of relative risk

aversion and volatility of consumption growth rate. However, given the square of consumption volatility

approaches nearly zero (e.g., 3% consumption volatility approaches 0.09%(=0.00009)), the risk-free rate

turns out to rise in a linear way with respect to an increase in risk aversion, thus generating its increasing

monotonicity with risk aversion.
10As far as the CRRA utility preference is concerned, the EIS is the inverse of the coefficient of relative

risk aversion, so that a higher risk aversion results in a lower EIS. The lower EIS implies that the agent’s

optimal decision is to consume more immediately and save less, because consumption would not grow

higher than as expected with respect to an increase in the interest rate.
11While most macroeconomic models theoretically suggest around 4% MPCs, the empirically observed

MPCs range from 20% to 60% (Carroll et al., 2017) and about 10% MPCs can be regarded as the low end

of the MPC range (Fisher et al., 2019). According to Parker et al. (2013), the empirical MPC estimates

range from 12% to 30%.
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disaster possibility and thus, the so-called excess sensitivity puzzle in consumption can be

safely ignored. More specifically, higher chances of being caught up with income disaster

the agent is exposed to, she has to pay more for the same amount of future consumption at

the expense of relatively more expensive present consumption, thus requiring the agent’s

greater consumption responses, MPCs, to changes in wealth.

In line with empirical and anecdotal evidence for disastrous income risk, we focus on

the extremes of the probability distribution of income by income disaster, deviating from

log-normality substantially.12 In terms of the modeling contribution, incorporating jumps

(even one event Poisson jump) into labor income leads to incomplete markets, and it is in

general very difficult to get analytical solutions to problems in incomplete markets.13 We

significantly extend existing (martingale) methods by Cox and Huang (1989) and Karatzas

et al. (1991) (who do not allow for income and its jump risk) to solve incomplete market

partial equilibrium consumption/savings and portfolio choice problems. The extension

that we consider in the paper uses ideas by Bensoussan et al. (2016) to endogenously

determine the unique SDF in incomplete markets.14 The model yields analytical solutions

for the SDF and consequently, the optimal consumption choice as a function of the SDF.

We then obtain the analytically tractable equilibrium interest rate and equity premium.

One very simple message delivered by our income disaster model is that the agent who

encounters income disaster consumes less and saves more than the agent who does not.

As an extreme simplification to capture consumption/savings behaviors of households in

12Standard literature relying on Brownian risks with log-normality fails to take sufficient account of the

low-probability, high-impact aspect of income disaster. However, large and negative earnings losses are

observed at job displacement (Low et al., 2010), and such substantial income losses should have a large

impact on investment and consumption/savings choices (Guvenen et al., 2015).
13One may encounter partial integro-differential equations in incomplete markets caused by income

disaster, which are difficult to solve analytically in general.
14Our incomplete-market optimization problem could be solved only if the unique SDF in the incomplete

market was determined in order to find the so-called minimal local martingale measure (Karatzas et al.,

1991). Here, such an unique determination could be attained by using the dynamic programming approach

of Bensoussan et al. (2016) especially with its analytically tractable solution to the non-linear differential

equation derived in the incomplete market.
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developing countries, we assume that the agent with high disaster exposure represents de-

veloping countries that rely heavily on the production of commodities whose prices are

more prone to disaster-like movements. Relatively, the agent with low disaster exposure is

assumed to represent developed countries that handle most of the manufacturing. In the

context of merely an illustrative application, the simple message with income disaster is

helpful for understanding the low-consumption-high-savings rates of households in devel-

oping countries. Households in developing countries find income disaster much harder to

buffer than those in developed countries, unless there is sufficient insurance against income

disaster. So, readiness for income disaster requires a large amount of precautionary savings

for households in developing countries, cutting back their consumption in the event of a

sudden fall in income caused by income disaster.

The research is contributing to two very mature literatures: (i) incomplete-market con-

sumption/savings literature on the macro side and (ii) equilibrium representative-agent

asset pricing literature on the finance side. More specifically, we share ingredients with

the partial equilibrium literature with incomplete markets in the sense that cash flows on

financial assets are assumed to be orthogonal to income disaster, making markets incom-

plete. We also share ingredients in common with the general equilibrium literature with

rare disaster in the sense that the shock is common, hitting all exposed agents at the same

time.

Given the markets are typically incomplete with uninsurable labor income shocks, the

classical martingale approach (Cox and Huang, 1989) that uses the risk-neutral measure is

no longer available in the baseline investment and consumption/savings models. In order

to address the challenges of market incompleteness, instead of the martingale pricing ap-

proach, the alternative dynamic programming approach can be used in incomplete markets

(Duffie et al., 1997; Liu et al., 2005). However, in this case, it involves highly non-linear

Hamilton-Jacobi-Bellman (HJB) equations, which are very difficult to solve analytically.

Therefore, the use of dynamic programming approach requires complex numerical schemes

to solve incomplete market problems. With no consideration of labor income and its risk,

one can adopt the approaches of Garlappi and Skoulakis (2010), Jin and Zhang (2012),
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and Jin et al. (2017) for such a numerical approach to solving consumption and investment

problems in incomplete markets.

Bensoussan et al. (2016) first study a partial equilibrium model of optimal consump-

tion/savings, investment, and retirement with jump-type forced unemployment risk. They

study the logarithmic utility without borrowing constraints in the partial equilibrium.

Here, we significantly extend the idea in Bensoussan et al. (2016) with the (more general)

CRRA utility and the borrowing constraints in the general equilibrium. Our paper then

incorporates income disaster in a general equilibrium setting with both the returns of risky

assets and the risk-free rate endogenously determined; and, more importantly, we study

the model implications in terms of the risk-free rate puzzle and the MPCs.

The precautionary savings literature is vast in macro. With an emphasis on the MPC,

the standard consumption/savings models (e.g., Bewley, 1977; Campbell, 1987; Caballero,

1990; Wang, 2003) imply MPCs typically around 4%. While empirically plausible MPC

estimates range from 10% to even 60%.15 Contrary to insignificant role of income risk

in matching empirical MPCs by the standard models,16 Wang et al. (2016) study an

incomplete-market consumption-savings model with recursive utility and stochastic income

modeled by both a Brownian motion and large jumps in labor income; their paper focuses

on the partial equilibrium with the interest rate being fixed, even without risky assets.

Wang et al. (2016) improve their model’s matching ability in empirical MPC numbers

significantly by joint consideration of stochastic income with its jumps and borrowing

constraints. We also isolate and very closely investigate the effects of such an income jump

shock with borrowing constraints on the MPC, especially in the general equilibrium (not

in the partial equilibrium as most studies do). The substantial optimal savings implied by

Wang et al. (2016) or our model carry over to the general equilibrium and thus, equilibrium

15Parker et al. (2013): 12% to 30%, Carroll et al. (2017): 20% to 60%, Fisher et al. (2019): 10%.
16According to the consumption/savings predictions of Bewley (1977) and Campbell (1987), an income

shock is less likely to affect the optimal savings of people. This is because consumption of people can be

financed mainly by total available financial resources (i.e., total wealth consisting of financial wealth and

human capital) rather than financial wealth only. Intuitively, the ability to self-insure against the income

shock improves as long as total wealth is large.
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MPCs with income disaster can be much higher than those implied by the standard models

without income disaster, attempting to match the empirical MPC using the model.

On the other hand, it has long been known that households in developing countries

are inclined to consume less and save more than those in developed countries (Cao and

Modigliani, 2004). A large gap in savings rates between developing and developed countries

gives rise to the so-called the low-consumption-high-savings rate puzzle. For instance, the

household savings rate in China is on average 20% of disposable income from 1989 to

2009, while it is merely 4% in the United States over the same period (Choi et al., 2017).

Possible explanations to help understand this puzzle include, but not limited to the role

of insurance in household savings decisions (Elmendorf and Kimball, 2000; Gormley et al.,

2012), the relation between demographic patterns and household savings rates (Cao and

Modigliani, 2004; Curtis et al., 2015), precautionary savings motives (Choi et al., 2017; He

et al., 2018), housing wealth (Chen et al., 2017; Painter et al., 2022). In this paper, we

support the result of Choi et al. (2017) and He et al. (2018) by taking a different route

that income disaster could play a role in resolving the puzzle by highlighting how exposure

to income disaster affects household savings decisions with precautionary savings motives

in both partial equilibrium and general equilibrium.

On the asset pricing side, we are building a general equilibrium model with two hetero-

geneous agents. The general equilibrium models with heterogeneous agents have been es-

tablished to help understand empirical patterns in the data.17 There are related researches

on asset pricing with unhedgeable income risk without income disaster (or jumps): Lucas

(1994), Gomes and Michaelides (2008), and Constantinides and Ghosh (2017). Generaliz-

ing Constantinides and Duffie (1996), Schmidt (2016) thoroughly investigates asset pricing

implications of tail risk in consumption growth and income with recursive preferences,

17For instance, these models have been used to understand the empirical properties of: excessive stock

market volatility (Dumas et al., 2009), liquidity and asset prices (Osambela, 2015), aggregate investment,

consumption, output and equity prices (Baker et al., 2016), international finance anomalies such as the

co-movement of returns and capital flows or home-equity preference (Dumas et al., 2017), and the yield

curve (Ehling et al., 2018).
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income skewness, heterogeneous agents, and incomplete markets. None of these studies,

however, endogenize adjustments in both stock market and consumption as we do with

income disaster.

We also draw on the literature on the risk-free rate puzzle. Weil (1989) has first iden-

tified that a very high interest rate is necessarily obtained in an attempt to match the

empirical equity premium with a very high risk aversion because both the equity premium

and the risk-free rate in standard asset pricing models are increasing functions of risk

aversion. Lucas (1994) has then demonstrated the marginal contribution of unhedgeable

income risks to match the risk-free rate. Consistent with Lucas (1994), Krueger and Lustig

(2010) have obtained the similar result that uninsurable Brownian-type income shocks are

irrelevant or the risk-free rate, which is the irrelevance result. Contrary to Lucas (1994)

and Krueger and Lustig (2010), Christensen et al. (2012) have highlighted the incremen-

tal contribution of unhedgebale Brownian-style income risks to match the risk-free rate

especially when agents have heterogeneous risk aversion preferences. Constantinides and

Ghosh (2017) have addressed the risk-free rate puzzle by shocks to household consumption

growth especially through the time-varying idiosyncratic labor income risk. Recently, AI

and Bhandari (2021) have thoroughly investigated the role of uninsured tail risk in labor

income for asset pricing in the optimal risk-sharing context and obtained a high equity

premium and a low risk-free rate with a moderate level of risk aversion, addressing the

equity premium and risk-free rate puzzles.18 In line with the income risk channel, we con-

tribute to the literature by studying the impact of income disaster on the risk-free rate

especially with optimal consumption/savings and investment choices that are considered

in the general equilibrium constraints.

This paper is, in particular, similar to the rare disaster literature. Income disaster

18There are different perspectives to resolve the risk-free rate puzzle. Bansal and Yaron (2004) have

established the long-run risk model where long-run shocks to consumption are priced for asset prices in-

cluding the equity premium and the risk-free rate. With an emphasis on parameter uncertainty, Weitzman

(2007) and Collin-Dufresne et al. (2016) have shown the significant impact of parameter learning about

associated probabilities to explain the empirical level of risk-free rate.

9



includes a low-probability, depression-like third state of Rietz (1988)’s model in the indi-

vidual’s income process, which can be regarded as a different application of the rare disaster

risk hypothesis by Rietz (1988). The rare disaster hypothesis arguably states that the slim

chance of rare disasters (e.g., economic crisis or war) can dominate the determinaiton of as-

set risk premia. The seminal work of Rietz (1988), Barro (2006) and Gabaix (2008, 2012),

Wachter (2013), Farhi and Gabaix (2016), and others have established different versions

of the rare disaster hypothesis, thereby explaining empirical regularities such as the equity

premium puzzle and the risk-free rate puzzle. Focusing on a firm’s investment decision

in a complete market (not the individual’s investment decision in the incomplete market),

Pindyck and Wang (2013) develop a general equilibrium model to study how rare disasters

affect a central planner’s consumption decision and asset pricing. They demonstrate an

additional negative effect of the presence of rare disasters on the MPCs and the equilib-

rium risk-free rate. Rare disasters may be generated by various reasons such as climate

change, weather disasters, business cycles, labor market frictions, etc. In this context,

Hong et al. (2023) take Bayesian learning into account disaster intensity to consider the

realistic reasons of rare disasters. More recently, Barro et al. (2022) establish a model of

rare disasters with heterogeneous risk aversion and recursive utility, and investigate the

quantity of safe assets. Consistent with the rare disaster hypothesis, the possibility of

income disaster considered in this paper can account for high risk premium on bonds espe-

cially through the precautionary savings channel implied by the agent’s incomplete-market

optimal consumption choice.

The reason why the risk-free rate is low differs from the rare disaster models. Similar

to the disaster models, both labor earnings and dividends fall sharply upon a disaster

realization. Different from the disaster models in which the SDF is exogenously given by

the marginal utility of consumption, the SDF in our model is endogenously determined

with the disaster-exposed agent’s optimal consumption choice in an incomplete market.

Hence, the agent’s incomplete-markets precautionary savings motive through her optimal

consumption decision affects the SDF and leads the equilibrium risk-free rate to decrease

accordingly.
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This paper is organized as follows. After the basic model setting in Section 2, we provide

in Section 3 analytic results for the endogenously determined SDF and the optimal con-

sumption choice. We then establish the income disaster model with optimal consumption

in Section 4. Quantitative analysis is given in Section 5. We discuss in Section 6 general

cases with multiple Poisson shocks driven by time-varying state-dependent intensity and

with uninsurable diffusive and continuous income shocks. In Section 7, we conclude the

paper.

2 Basic Setting

We first lay out the mathematical building blocks for the uncertainty structure. The

Brownian-uncertainty in the economy is modeled by the complete probability space (Ω,A, P )

on which the multi-dimensional Brownian motion process Z(t) used in the stock prices (2)

is defined. The probability space (Ω,A, P ) is captured by the filtration F = {Ft; t ≥ 0}

which is the usual P -augmentation of σ(Z(s); 0 ≤ s ≤ t) generated by the standard Brow-

nian motion process Z. All statements including random variables are understood to hold

in the mathematical context of either almost everywhere or almost surely.

The aggregate output process I(t) is modeled by a geometric Brownian motion with

one Poisson shock as follows:

dI(t) = µII(t−)dt+ (σI)>I(t−)dZ(t)− (1− k)I(t−)dN(t), I(0) = I > 0, (1)

where µI is the output mean, σI is the standard deviation vector, Z(t) is the market factor

considered in the stock prices (2), and k ∈ (0, 1) is the recovery parameter. Here, N(t) is

a one-time Poisson shock with intensity δ > 0:

dN(t) = 1, t ≥ τ ; dN(t) = 0, t < τ,

where τ is an exponential random variable with intensity δ.19

19Notice that the random arrival τ of income disaster is not assumed to be a stopping time of the

filtration F generated by asset (stock or income) prices. Rather, the date τ is randomly taken to be a
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There are two information sets available to the agent. First, at any time t the agent

knows information about past values of stock prices (Ft). Second, the agent also knows

information about whether income disaster has occurred or not (Nt ≡ σ(τ ∧ t)), where

τ ∧ t represents inf(τ, t), which is the smallest filtration satisfying the so-called progressive

enlargement of F with respect to τ , which is denoted by G.

Definition 2.1 The progressive enlargement of F with respect to a random time τ , denoted

by G = {Gt; t ≥ 0}, is the smallest filtration including F , where τ is a stopping time.

Introduce Nt = σ(τ ∧ t), which is the filtration generated by the family τ ∧ t. By definition,

the filtration G is taken to be the smallest right continuous family of sigma-fields such that

both Ft and Nt are in Gt.

Notice that if τ is assumed to be a F -stopping time, this enlargement reduces to G = F .

There is one riskless bond and multiple risky stocks. The bond price B and the stock

prices S are given by

dB(t) = rB(t)dt, dS(t) + d(t)dt = S(t){µdt+ σ>dZ(t)}, (2)

where r is the risk-free interest rate, d(t) = (d1, ..., dN)> are dividends for N risky stocks,

µ is the mean vector, σ is the nonsingular standard deviation matrix, and Z(t) is the

standard Brownian motion process with the dimension equal to the number of linearly

independent returns on stocks. Notice that the risk-free interest rate r, the mean vector

µ, and the standard deviation matrix σ are to be determined from equilibrium conditions

(Section 4).

positive value according to its exponential distribution with intensity δ, so it is measurable with respect to

the sigma-algebra A. Put differently, observing asset prices up to time t does not imply full information

about whether τ has occurred or not by time t. Hence, there are some dates t ≥ 0 such that the event

{t < τ} is not Ft-measurable. In this paper, income disaster is assumed to be driven by a one-time Poisson

shock with constant δ, thus rather assuming the independence that income disaster occurrence (the first

jump time of the Poisson process) is not related to stock prices at all, i.e., P [τ > t|F∞] = P [τ > t] for all

t, where F∞ includes all possible information about the whole path of stock prices.
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Following Krueger and Lustig (2010), Garleanu and Panageas (2015), and Barro et al.

(2022), the fraction ξ ∈ (0, 1) of aggregate output constitutes aggregate labor earnings

ξI(t).20 The remaining fraction 1 − ξ of aggregate output is then paid out as a dividend

as follows: D(t) ≡
∑N

i=1 di(t) = (1− ξ)I(t) = I(t)− ξI(t), which shows that the presence

of income disaster (in the form of the Poisson shock) would, thus, affect asset returns (2)

as well.21

We consider an infinite-horizon economy with a single consumption good (the nu-

meraire). Each representative agent has wealth W (t) and invests π(t) in the stock market,

and saves her remaining wealth W (t) − π(t)1 in the bond market, where 1 is a vector of

one’s with dimensionality equal to the number of stocks, π(t) is the dollar amount vector

invested in each risky stock.22 The agent also consumes c(t) and receives ξI(t). The agent’s

dynamic wealth (budget) constraint is then: W (0) = w > −ξI/β1,

dW (t) = {rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)}dt+ π(t)>σ>dZ(t), (3)

The borrowing limit is imposed by the following wealth constraints:

W (t) > −L(t) ≥ −ξI(t)

β1

, for all t ∈ [0, τ ], W (t) > −kξI(t)

β1

, for all t > τ, (4)

where L(t) (L(0) = L > 0) is a non-negative time-varying function exogenously given,

β1 = r − µI + (σI)>θ, θ = (σ>)−1(µ− r1). (5)

Without k, the wealth constraint (4) is same with the free borrowing against wages; in

other words, the agent is allowed to borrow against the present value of her future wages

20According to Krueger and Lustig (2010), there exists a Lucas tree generating a share of aggregate

output as capital income, i.e., dividends, so that the remaining share represents labor earnings. Garleanu

and Panageas (2015) have adopted this kind of aggregate output economy, where the aggregate earnings

are given by a fraction of aggregate output and the remaining fraction of output is being paid out as

dividends. Barro et al. (2022) have also worked with this Lucas-tree world.
21Aggregate earnings risks and asset return risks are closely related (Ball et al., 2009). For instance,

there is a positive relation between earnings and asset returns at the firm level (Ball and Brown, 1968).
22Our focus until Section 3 is on the impact of income disaster on a single agent’s optimal consumption

and investment policies. We then consider a general equilibrium analysis in Section 4 for two representative

agents, the normal agent who is free from income disaster and the income-disaster-exposed agent.
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(or the human capital).23 The recovery parameter k is needed in (4) to accommodate the

jump in I(t). The similar type of constraint was proposed in Bensoussan et al. (2016).

Note that since we only consider one Poisson event, after the the arrival of the jump

event the aggregate earnings are reduced to kξI(t) from ξI(t), where the aggregate output

I(t) follows a geometric Brownian motion without jumps: dI(t) = µII(t)dt+(σI)>I(t)dZ(t),

I(0) = I > 0.

The agent’s optimal consumption and investment model is to maximize over infinite

horizon her CRRA utility from intermediate consumption with wealth constraints (3) and

(4) by optimally controlling her consumption c and investment π.24 The value function is

given by

V (w, I) ≡ sup
(c,π)

E
[ ∫ τ

0

e−βt
c(t)1−γ

1− γ
dt+ e−βτ

∫ ∞
τ

e−β(t−τ) c(t)
1−γ

1− γ
dt
]
, (6)

subject to the wealth constraints (3) and (4), where β > 0 is the agent’s subjective discount

rate which can incorporate a hazard rate of death by standard arguments and γ > 0 (γ 6= 1)

is the agent’s constant coefficient of relative risk aversion.

After the arrival of the Poisson shock, the value function reduces to that in Merton

(1969, 1971) except with the initial value I(0) being replaced by kI(0), because the agent’s

optimal consumption and investment strategy follows Merton’s strategy with the standard

wealth constraint without jumps (i.e. with τ = 0 in (4)) and the new initial value. More

precisely,

V A(w, kI) ≡ sup
(c,π)

E
[ ∫ ∞

0

e−βt
c(t)1−γ

1− γ
dt
]

= K
(w + kξI/β1)1−γ

1− γ
, (7)

23Following Koo (1998), the certainty equivalent present value (CEPV) of lifetime labor income can be

defined with the standard SDF with which a zero risk premium is obtained for any risk orthogonal to the

stock market risks. The CEPV then serves as the human capital that is the present value of the agent’s

future wages. The detailed calculations for the human capital value based on the CEPV are available in

Section B in Appendix.
24Throughout the paper, we only consider the set of admissible policies of consumption c(t) and in-

vestment π(t) satisfying the dynamic wealth constraint given in (3) and the wealth constraints given in

(4).
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with K = A−γ, A =
γ − 1

γ

(
r+
||θ||2

2γ

)
+
β

γ
. Note that with the new initial condition kI(0)

the constraint (4) is satisfied after τ , which is the standard wealth constraint without

jumps.

By the principle of dynamic programming, the value function given in (6) can be rewrit-

ten as the following:

V (w, I) = sup
(c,π)

E
[ ∫ τ

0

e−βt
c(t)1−γ

1− γ
dt+ e−βτV A(W (τ), kI(τ))

]
.

Integrating out the random arrival τ allows us to restate the optimal consumption and

investment problem as the following:25

V (w, I) = sup
(c,π)

E
[ ∫ ∞

0

e−(β+δ)t
(c(t)1−γ

1− γ
+ δK

{W (t) + kξI(t)/β1}1−γ

1− γ

)
dt
]
, (8)

subject to (3) and (4).

Note that the agent with income disaster becomes forward looking and aims to maximize

her consumption utility before income disaster occurs, and incorporating the value function

after income disaster occurs in the optimization with the income disaster intensity δ.

3 Analytic Results

The challenge of solving the agent’s problem in incomplete markets results from a source

of indeterminacy of SDFs. To put it another way, the existence of a unique SDF is not

straightforward in incomplete markets. To address the challenge, we endogenously deter-

mine the unique SDF in two steps. First, we explicitly characterize SDFs in incomplete

markets. Next, we determine the unique SDF with which the unique risk-neutral measure

with respect to income disaster can be constructed so that the expected return on the

agent’s wealth becomes the risk-free rate. All the technical details behind the derivation

and some related notations are available in Section D and Section E in Appendix.

25Such a method when solving a standard stochastic control problem with random horizon has been

utilized widely by Liu and Loewenstein (2002) and Lin et al. (2022) more recently. For the details of the

derivation, refer to Section C in Appendix.
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Theorem 3.1 The unique stochastic discount factor (SDF) in an incomplete market caused

by income disaster is endogenously determined as

ξ δ̂(t) = exp
{

ln
( δ̂
δ

)
N(t)− (δ̂ − δ)t

}
H(t), (9)

where δ̂ is the unique risk-neutral income disaster intensity given by

δ̂ =
( w
ξI

+
k

β1

)−γ δK
z
,

z is the dual variable corresponding to financial wealth w by their relation as follows

w +
ξI

β1

=
ξI

Â+ δ/γ
z−1/γ + ξIB∗δz

−α∗δ + IP, (10)

Â is defined in (A-26), −1 < α∗δ < 0 is one root of the characteristic equation in (A-28),

B∗δ is a constant to be determined by (A-27), IP = IP1 + IP2 represents the integral parts

given by (A-35), and the dynamics of H(t) are given by

dH(t) = −H(t){rdt+ θ>dZ(t)}, H(0) = 1.

The endogenously determined SDF given in (9) is a generalized version of the well-

known Arrow-Debreu price. The identified quantity ξ δ̂(t) can be regarded as the Arrow-

Debreu price per unit probability of one unit consumption good in state at time t.26 The

derived SDF determines the unique risk-neutrality with respect to income disaster. It can

be, thus, used as the Randon-Nikodym derivative for measure change purposes in pricing

interesting claims that are exposed to income disaster.

Importantly, δ̂ given in the theorem is the so-called risk-neutral income disaster intensity

and the market price of income disaster can be defined as the logarithm of the ratio of

risk-neutral intensity δ̂ to original intensity δ, i.e., ln(δ̂/δ), in addition to the canonical

market price of risk (or the Sharpe ratio) θ. Using Itô’s formula, we obtain before income

disaster occurs the following dynamics of the SDF given in Theorem 3.1: for t < τ ,

dξ δ̂(t) = −ξ δ̂(t)[{r + (eln(δ̂/δ) − 1)δ}dt+ θ>dZ(t)]

= −ξ δ̂(t)[{r + (δ̂ − δ)}dt+ θ>dZ(t)],
(11)

26Basically, the Arrow-Debrew price is the equilibrium price of one unit consumption good. It can serve

as a shadow price for discounting future costs and benefits in financial analysis.
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which shows the impact of income disaster affecting the SDF with adjustment of the risk-

free interest rate by the magnitude of market price of income disaster ln(δ̂/δ), i.e., the drift

of the SDF increases from the risk-free rate by the difference δ̂ − δ between risk-neutral

income disaster intensity δ̂ and original intensity δ.

Theorem 3.1 allows a convenient multiplicative separation of the traditional Arrow-

Debreu price and the income disaster adjustments. In the absence of income disaster

(δ = δ̂), the SDF (9) reduces to the conventional Arrow-Debrew price and presents only the

aggregate output uncertainty adjustments without any variations in the risk-free interest

rate as illustrated by (11). In the presence of income disaster with the positive market price

of income disaster, i.e., when δ̂ > δ,27 the increased drift by the market price of income

disaster in the SDF dynamics (11) results in more expensive equilibrium consumption

price in the future as identified in (9). Hence, the income-disaster-exposed agent is in a

high marginal utility state and hence willing to give up more consumption than without

income disaster in order to finance more expensive future consumption costs. We expect

the risk-free rate to decrease in equilibrium due to such a demand for optimal savings.

We obtain analytical solutions for the agent’s optimal consumption and investment

choice in the following theorem.

Theorem 3.2 The optimal consumption strategy c∗ ≡ c(0) and the optimal investment

strategy π∗ ≡ π(0) of the income-disaster-exposed agent are derived analytically as follows

c∗ = (Â+ δ/γ)
(
w +

ξI

β1

− ξIB∗δz−α
∗
δ − IP

)
, (12)

π∗ =
1

γ
σ−1θw +

1

γ
σ−1(θ − γσI)

[ξI
β1

+ (γα∗δ − 1)ξIB∗δz
−α∗δ

− 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ

1− γ

/
c∗−γ + (γαδ − 1)× IP1 + (γα∗δ − 1)× IP2

]
,

(13)

27It may be reasonable to assume the positive market price of income disaster, i.e., δ̂ > δ if, and only

if ln(δ̂/δ) > 0. The negative market price of income disaster would be the case for which an increase in

income can be triggered by various reasons, e.g., internet bubble or technology innovation, etc.
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where Â is defined in (A-26), αδ > 1 and −1 < α∗δ < 0 are the two roots of the characteristic

equation in (A-28),

β3 = γ(σI)> − θ>,

z is a dual variable of financial wealth w and their relation is given in (10), B∗δ is a constant

to be determined by (A-27), and IP = IP1 + IP2 represents the integral parts given by

(A-35).

Without income disaster, i.e. when δ = 0, we have B∗0 = 0, IP = IP1 = IP2 = 0, and

the agent’s optimal consumption strategy (12) reduces to that in Merton (1969, 1971):

c∗ = Â
(
w +

ξI

β1

)
,

which means that the agent’s consumption can be annuitized from her total available

financial resources (wealth plus the present value of future income). Furthermore, the

MPC out of financial wealth is Â, implying that regardless of wealth levels the agent’s

optimal consumption to total wealth ratio is maintained at a constant rate.

The classic Merton (1969, 1971) investment rule without income disaster can be also

obtained by letting δ = 0:

π∗ =
1

γ
σ−1θ

(
w +

ξI

β1

)
− σ−1σI

ξI

β1

. (14)

The first term on the right hand side of (14) represents the mean-variance asset alloca-

tion and the second one represents the demand for hedging (or the intertemporal hedging

component) against the aggregate output volatility σI .

Without income disaster, i.e., δ = 0, IP = IP1 = IP2 = 0, so that the integral

parts IP , IP1 and IP2 have no role in the optimal strategies given in (12) and (13).

With income disaster, i.e., δ > 0, the integral parts play important roles in the optimal

adjustments of consumption (12) and investment (13), and such extra adjustments reflect

the savings motive for precautionary reasons in the event of income disaster.

We now quantitatively identify two different optimal savings motives in the following

definition by measuring the wedge between total wealth (financial wealth+human capital)
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and the sum of consumption and investment: (i) Standard optimal savings and (ii) Income-

disaster-induced optimal savings.

Definition 3.1 We quantitatively identify two different optimal savings motives as follows.

(i) Standard optimal savings

≡
(
w +

ξI

β1

)
− c(0;B∗0 = 0, δ = 0)− π(0;B∗0 = 0, δ = 0)

=
(

1− Â− 1

γ
σ−1θ

)(
w +

ξI

β1

)
+ σ−1σI

ξI

β1

.

(ii) Income-disaster-induced optimal savings

≡
(
w +

ξI

β1

)
− c(0)− π(0)

= Standard optimal savings + Income-disaster-PS,

where the income-disaster-induced precautionary savings (Income-disaster-PS) are given

as follows:

Income-disaster-PS

= − δ
γ

(
w +

ξI

β1

)
+ (Â+ δ/γ)

(
ξIB∗δz

−α∗δ + IP
)

− 1

γ
σ−1(θ − γσI)

[
(γα∗δ − 1)ξIB∗δz

−α∗δ − 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ

1− γ

/
(c∗)−γ

+ (γαδ − 1)× IP1 + (γα∗δ − 1)× IP2
]
.

The standard optimal savings show that the marginal propensity to save (MPS) out

of financial wealth is 1 − Â − 1
γ
σ−1θ. This MPS result implies that with respect to one

unit increase of wealth, the constant portion of the individual’s extra money aside from

consumption portion Â and investment portion 1
γ
σ−1θ is to be optimally put into her

riskless savings.

As is fairly standard in consumption/savings models with incomplete markets, there is

a large additional precautionary savings term in this model. In addition to the standard

optimal savings, the agent cuts down on her consumption by (Â+ δ/γ)× IP with income

disaster as in (12), and such a consumption reduction contributes to increases in the agent’s

optimal savings especially via Income-disaster-PS in Definition 3.1.
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4 Income Disaster Model

We consider a simple pure exchange economy in the type of Lucas (1978). The economy

is populated by two representative income-endowed traders who have optimized in Section

3 their lifetime consumption over infinite horizon. One is the normal agent (n) who is

free from income disaster and the other is the income-disaster-exposed agent (d) who is

subject to a sudden jump shock (driven by a one-time Poisson shock) causing her income

being equal to a fraction of its current level.28 An equilibrium in this two representative-

agent economy is defined by the sum of their consumption being equal to the aggregate

output (which is proportional to the agents’ income endowment) and the sum of stock

positions adding up to the agent’s financial wealth, resulting in a no-trade equilibrium. In

this income disaster model with two representative agents, the price of any Arrow security

including the security that insures against the income disaster is such that the net holding

of the security by the agents is zero because markets must clear.

The normal agent (n) solves the following problem:

Vn(wn, I) = sup
(cn,πn)

E
[ ∫ τ

0

e−βt
cn(t)1−γ

1− γ
dt
]
,

which is subject to the dynamic wealth constraint as follows: Wn(0) = wn > −ξnI/β1,

dWn(t) = {rWn(t)− cn(t) + ξnIn(t) + πn(t)>(µ− r1)}dt+ πn(t)>σ>dZ(t),

where In(t) follows a geometric Brownian motion:

dIn(t) = µIIn(t)dt+ (σI)>In(t)dZ(t), In(0) = I > 0. (15)

The income-disaster-exposed agent (d) solves the following problem:

Vd(wd, I) = sup
(cd,πd)

E
[ ∫ τ

0

e−βt
cd(t)

1−γ

1− γ
dt+ e−βτ

∫ ∞
τ

e−β(t−τ) cd(t)
1−γ

1− γ
dt
]
,

28The model with two agents can be rationalized as an extreme simplification to capture the case where

one type of agent is more exposed to income disaster than the other. For instance, rare but non-negligible

people undergo disastrous income shocks resulting in a dramatic fall in wages at job displacement. Such

a wage fall is likely to occur more often in small firms. So, we can consider income disaster encountered

by individuals in small firms facing firm closure, and employing forced unemployment risk of individuals

working in large firms for consideration of the two agents.
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which is subject to the dynamic wealth constraint as follows: Wd(0) = wd > −ξdI/β1,

dWd(t) = {rWd(t)− cd(t) + ξdI(t) + πd(t)
>(µ− r1)}dt+ πd(t)

>σ>dZ(t),

where I(t) follows (1), with the borrowing limit (4).

Having solved the agents’ problems stated above by Section 3, initial wealth levels wn

and wd are all expressed in terms of initial stock holdings by Merton (1971) and (13):

πn =
1

γ
σ−1θ

(
wn +

ξnI

β1

)
and

πd =
1

γ
σ−1θwd +

1

γ
σ−1(θ − γσI)

[ξdI
β1

+ (γα∗δ − 1)ξdIB
∗
δz
−α∗δ

− 2γ

||β3||2
δK

(
w +

kξdI

β1

)1−γ

1− γ

/
cd
−γ + (γαδ − 1)× IP1 + (γα∗δ − 1)× IP2

]
.

Definition 4.1 An equilibrium is characterized as a collection of (r, µ, σ) and optimal

strategies (cn(t), cd(t), πn(t), πd(t)) of agent n and agent d such that the consumption goods,

stock and bond markets clear as: for t < τ ,

cn(t) + cd(t) = I(t),

N∑
j=1

{πnj(t) + πdj(t)} = Wn(t) +Wd(t),

νnj(t) + νdj(t) = 1, for every stock j ∈ {1, ..., N},

where the equilibrium has the jump at time τ and the jump size is given by Theorem 3.1 as

ln
ξ δ̂(τ)

H(τ−)
= ln

( δ̂
δ

)
− (δ̂ − δ)τ, (16)

νnj(t) and νdj(t) represent the proportion of financial wealth invested in the j-th stock by

agent n and agent d, respectively, and N is the number of risky stocks.

We anticipate that in equilibrium the aggregate output I(t) has a jump caused by

income disaster at time τ , so its dynamics can be given by (15) for t < τ , but allowing
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for the jump and its size is determined by (16). In this case, we still have the following

relation for t < τ :

I(t) = ξnIn(t) + ξdI(t) +D(t)

= (ξn + ξd)I(t) +D(t)

= ξI(t) +D(t),

as a result, D(t) = (1 − ξ)I(t) for t < τ demonstrating that dividends are a fraction of

aggregate output. Our equilibrium quantities determined in the following theorems reflect

before income disaster occurs the effects of such a jump.

Theorem 4.1 The equilibrium SDF in the normal-agent economy n is given by

Hn(t) =
1

λn
e−βtIn(t)−γ,

where the constant λn satisfies

E
[ ∫ ∞

0

Hn(t){(1− ξn)In(t)}dt
]

= wn.

Before income disaster occurs, the corresponding SDF in the economy d with the agent n

and the agent d is

Hd(t) = (λ−1/γ
n + λ

−1/γ
d )γe−{β−(δ̂−δ)}tI(t)−γ,

where the constants λn and λd satisfy

E
[ ∫ ∞

0

e−δ̂tHd(t)
(
cn(t)− ξnIn(t) + δ̂Wn(t)

)
dt
]

= wn,

E
[ ∫ ∞

0

e−δ̂tHd(t)
(
cd(t)− ξdI(t) + δ̂Wd(t)

)]
= wd,

cn(t) =
(
λne

{β−(δ̂−δ)}tHd(t)
)−1/γ

,

cd(t) =
(
λde

{β−(δ̂−δ)}tHd(t)
)−1/γ

.

We define the price of the equity market portfolio, Sem, as the sum of the risky asset

prices:

Sem(t) =
N∑
i=1

Si(t), Sem(0) = Sem,
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paying out the dividend D(t) =
∑N

i=1 di(t) with D(0) = D. The equilibrium price of the

equity market portfolio is then given by

Sem(t) = D(t)Et

[ ∫ ∞
t

H(s)D(s)

H(t)D(t)
ds
]
,

where H(s), s ≥ t, is the equilibrium SDF given in Theorem 4.1.

Theorem 4.2 The equilibrium price of the equity market portfolio in the normal-agent

economy n is given by

Semn (t) =
D(t)

β + (γ − 1)µI − 1

2
||σI ||2γ(γ − 1)

.

Before income disaster occurs, the corresponding equilibrium price in the economy d with

with the agent n and the agent d is

Semd (t) =
D(t)

β − (δ̂ − δ) + (γ − 1)µI − 1

2
||σI ||2γ(γ − 1)

.

Theorem 4.2 shows that the equilibrium equity market portfolio price is the time-t

present value of future dividend discounted at different discount rates in the economy n

and in the economy d. Theorem 4.2 then implies the dynamics of the equilibrium equity

market portfolio price as follows

dSem(t) = Sem(t){µIdt+ (σI)>dZ(t)}.

Theorem 4.3 The equilibrium equity expected return and volatility in the normal-agent

economy n are given by

µemn = β + γµI − 1

2
||σI ||2γ(γ − 1) and σemn = σI ,

and the equilibrium risk-free interest rate and Sharpe ratio are given by

rn = β + γµI − 1

2
γ(γ + 1)||σI ||2 and θn = γσI .

Consequently, the equilibrium equity premium in the economy n is given by

µemn − rn = γ||σI ||2.
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Before income disaster occurs, the corresponding equilibrium quantities in the economy d

with the agent n and the agent d are

µemd = β − (δ̂ − δ) + γµI − 1

2
||σI ||2γ(γ − 1) and σemd = σI ,

rd = β − (δ̂ − δ) + γµI − 1

2
γ(γ + 1)||σI ||2 and θd = γσI ,

µemd − rd = γ||σI ||2.

Our equilibrium Sharpe ratio and equity premium are not affected by income disaster

directly. The Sharpe ratio and equity premium have the usual structure as in the standard

asset pricing framework without income disaster. This is expected not surprisingly because

within our income disaster model context, the economy is complete and arbitrage-free

so that the agents absorb all the aggregate risk, thus coinciding with pure market risk

adjustment only especially for the traditional market price of risk (or the Sharpe ratio) θ.

The equilibrium risk-free interest rates in the economy n and in the economy d all

increase with the expected consumption growth rate µI and decrease with the consumption

growth volatility ||σI ||. Notice that the square term associated with consumption growth

volatility becomes almost zero, because the empirical magnitude of consumption growth

volatility is very small. Hence, the interest rate is monotone increasing with risk aversion

in the absence of income disaster, i.e., when δ̂ = δ. However, in the presence of income

disaster, i.e., when δ̂ 6= δ, the interest rate no longer monotone increases with risk aversion.

As far as the positive market price of income disaster is concerned with δ̂ > δ, there are

always states of the world in which rd is lower than rn. The market price of income

disaster will increase to compensate for the agent d’s risk exposure to income disaster and

such risk compensation further increases when the agent d is more risk averse. This risk

compensation mechanism leads the interest rate to decrease with risk aversion.

We derive the equilibrium consumption growth dynamics in the economy d with the

agent n and the agent d.
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Theorem 4.4 Before income disaster occurs, the equilibrium consumption growth dynam-

ics in the economy d with the agent n and the agent d are given by

dcd(t)

cd(t)
=

1

γ

(
rd − β +

1

2
γ(1 + γ)||σI ||2 + δ̂ − δ

)
dt+ (σI)>dZ(t). (17)

Our equilibrium consumption growth dynamics (17) confirms the agent d’s three con-

sumption/savings motives in equilibrium: (i) dissavings due to impatience rd − β, (ii)

precautionary savings due to diffusive-type income risk 1
2
γ(1 + γ)||σI ||2, and (iii) precau-

tionary savings due to jump-type income disaster δ̂− δ. Wang (2003) shows that the equi-

librium consumption has zero growth rate and hence, it follows a martingale.29 However,

such a martingale property of consumption has been at odds with empirical plausibility in

the sense that consumption changes are rather predictable by anticipated future income

changes. Therefore, the equilibrium consumption should have its nonzero growth rate. The

gap between the theory and empirical reality is known as the excess sensitivity puzzle in

consumption (Flavin, 1981).30 Interestingly, substantial precautionary savings term δ̂ − δ

exists caused by income disaster even in our complete-markets income disaster model, thus

leading the equilibrium consumption to have nonzero growth rate helping to resolve the

excess sensitivity puzzle.

We derive the agent d’s equilibrium marginal propensity to consume (MPC) out of

financial wealth wd.

Theorem 4.5 The agent d’s equilibrium marginal propensity to consume (MPC) out of

financial wealth wd is given by

MPC = Ã(rd) + δ/γ, (18)

29If we assume the equality between r and β and turn off the precautionary savings (||σI ||2 = 0) as in the

standard literature, we can obtain in the absence of income disaster (δ̂ = δ) exactly the same equilibrium

result of Wang (2003).
30While the volatility of equilibrium consumption dynamics given in Theorem 4.4 is exactly the same

as the consumption growth volatility, σI , and hence income disaster cannot be invoked to rationalize the

excess smoothness puzzle raised by Campbell and Deaton (1989).
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where

Ã(rd) = rd + δ − µI + γ||σI ||2 +
δ̂ − δ
γ

.

Without income disaster, Wang (2003) demonstrates that the equilibrium MPC is

merely equal to the risk-free interest rate. This theoretically derived MPC by the risk-free

rate is incapable of matching the empirically plausible MPC values. Most macroeconomic

models theoretically produce around 4% MPC, whereas the empirically plausible MPC

ranges from 20% to 60% (Carroll et al., 2017). More recently, Fisher et al. (2019) obtain

about 10% MPC which can be regarded as the low end of the MPC range.31

With income disaster, the equilibrium MPC given in (18) has extra terms in addition

to the risk-free interest rate. The extra terms on the right-hand side of the equation

(18) contribute to the income-disaster-perceived effective interest rate. The effective rate

decreases with the expected consumption growth rate µI and increases with the income

disaster intensity δ, the consumption growth volatility ||σI ||, and the precautionary savings

δ̂ − δ due to income disaster. In our next quantitative analysis, we will show how large

precautionary savings can be generated with income disaster possibility.

5 Quantitative Analysis

Parameter Calibration. We consider the subjective discount rate β = 4% and the

coefficient of relative risk aversion γ = 2 that are the common values adopted in the

literature. For the baseline parameter values for the expected consumption growth rate µI

and the volatility of consumption growth rate σI , we use the Robert J. Shiller’s real monthly

dividend data from 1926 to 2016 and the century-long sample (1891-1994) by Campbell

(1999), so that µI = 1.52%, σI = 4.06% and µI = 1.74%, σI = 3.26%, respectively. For

numerical illustrations, we do not allow for borrowing against the present value of future

31Parker et al. (2013) have obtained the empirical MPC estimates ranging from 12% to 30%.
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income, i.e., L = 0.32

The crucial parameter for our income disaster model is the Poisson intensity δ. Income

disaster considered in this paper is a permanent income shock that could occur due to forced

unemployment and ill-health. Permanent layoffs are empirically plausible especially when

individuals work for small firms. Given a positive relation between firm size and credit

ratings, if we relate bankruptcy of small firms to the default of speculative-grade firms

based on Moody’s historical default rates data, the Poisson intensity δ can be estimated as

4.23% (Jang et al., 2013) or 5.26% (Jang et al., 2019). As to reduced ability to work, e.g.,

disability, the intensity δ can be even much greater as 12.05% for good health status and

17.86% for bad health status when matching years of survival in employment depending

upon each health status conditional on working at age 57 (Dwyer and Mitchell, 1999).

Barro (2006) estimates that income disaster possibility is on average 1.7% per year. Wang

et al. (2016) have chosen the arrival rate of large discrete (jump) earnings shocks as 5%. In

our numerical illustrations, we consider such a reasonable range of values for the Poisson

intensity δ up to 5% in most cases.

The income recovery parameter k in the aftermath of income disaster is set to 40%.33

Implications on Interest Rate. In our analytical theorem for the general equilibrium

quantities (Theorem 4.3) obtained as a result of the analytical solutions for the SDF (The-

orem 3.1), we have theoretically identified a decrease in the equilibrium risk-free interest

rate by the market price of income disaster measured as the difference δ̂ − δ between

risk-neutral income disaster intensity δ̂ and original (or physical) intensity δ. The income-

disaster-exposed agent would be in a more expensive state for future consumption due to

the increased SDF drift by (11) (or the increased consumption growth rate as demonstrated

32For the effects of borrowing constraints with a range of values for L on the agent’s optimal strategies,

refer to further numerical results in Section K in Appendix.
33In practice, U.S. households have been rescued by a safety net in the aftermath of income disaster

(for example, possibly caused by forced unemployment) and recover, at least, 20% of the income that they

earned before unemployment (Carroll et al., 2003).
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in Theorem 4.4), so the agent is willing to consume less and save more for precautionary

reasons. Such a precautionary savings channel should imply a reduction in the equilibrium

interest rate with income disaster.

Indeed, in the absence of income disaster (δ = 0), the equilibrium interest rate is 6.55%,

but in the presence of income disaster (δ > 0), it drops significantly (Figure 1). This

numerical relationship supports our theoretical predictions for interest rates with income

disaster as stated above and implies the important discontinuity and dramatic change in

the interest rate even when δ is very small. It turns out that the income-disaster-exposed

agent demands a high market risk premium. For instance, the equilibrium interest rate

decreases 41.53% (i.e., to 3.83%) as δ increases from 0 to 2%.

Figure 1: Equilibrium interest rates. Parameter Values: β = 4% (subjective discount rate), γ = 2 (risk

aversion), µI = 1.52% (expected consumption growth rate), σI = 4.06% (volatility of consumption growth rate),

σ = 20% (stock volatility), w = 1 (initial wealth), I = 1 (aggregate output), ξ = 0.5 (fraction constituting aggregate

earnings), k = 40% (recovery rate), and L = 0 (borrowing constraint). For the expected consumption growth rate

and volatility of consumption growth rate, µI and σI , we have used the Robert J. Shiller’s real monthly dividend

data from 1926 to 2016 in “Irrational Exuberance” published by Princeton University Press. Note: In the absence

of income disaster (δ = 0), the equilibrium interest rate is 6.55%, but in the presence of income disaster (δ > 0), it

drops significantly, implying the important discontinuity and dramatic change in the interest rate even when δ is

small.

Risk aversion γ also affects the equilibrium risk-free interest rates (Figure 2). When
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δ > 0, high values of γ no longer counterfactually generate high risk-free interest rates, so

the risk-free rate puzzle (Weil, 1989) is avoided. Rather, an increase in risk aversion can

lead to a sizable decrease in risk-free rate in the presence of income disaster.

Figure 2: Equilibrium interest rates. Parameter Values: β = 4% (subjective discount rate), γ = 2 (risk

aversion), µI = 1.52% (expected consumption growth rate), σI = 4.06% (volatility of consumption growth rate),

σ = 20% (stock volatility), w = 1 (initial wealth), I = 1 (aggregate output), ξ = 0.5 (fraction constituting aggregate

earnings), k = 40% (recovery rate), and L = 0 (borrowing constraint). Note: When δ > 0, high values of γ no

longer counterfactually generage high risk-free interest rates, so the risk-free rate puzzle (Weil, 1989) is avoided.

Rather, an increase in risk aversion can lead to a decrease in risk-free rate in the presence of income disaster.

The presence of income disaster drives down the risk-free interest rate by stimulating

the precautionary savings mechanism, thereby maintaining the risk-free rate low. That

is, with income disaster people’s demand for precautionary savings is sufficiently strong

making her save at a high rate and lowering the equilibrium interest rate significantly.

Excess Sensitivity Puzzle. Addressing the excess sensitivity puzzle can be attempted

only if we have the nonzero drift of equilibrium consumption growth as theoretically pre-

dicted in Theorem 4.4. We have theoretically demonstrated that our equilibrium consump-

tion growth rises with precautionary savings induced by income disaster. We support this

theoretical result by numerically showing that the consumption growth rate increases with
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the income disaster intensity δ (Figure 3). This numerical result implies that future con-

sumption can be determined by the extent to which how often income will plummet due

to income disaster. Intuitively, higher chances of being caught up with income disaster the

individual is exposed to, she has to pay more for the same amount of future consumption

at the expense of relatively more expensive present consumption. The equilibrium con-

sumption price will, therefore, become more sensitive to changes of future income caused

by income disaster.

Figure 3: Equilibrium Consumption Growth Drift. Parameter Values: β = 4% (subjective discount rate),

γ = 3 (risk aversion), µI = 1.74% (expected consumption growth rate), σI = 3.26% (volatility of consumption

growth rate), σ = 18.53% (stock volatility), w = 1 (initial wealth), I = 1 (aggregate output), ξ = 0.5 (fraction

constituting aggregate earnings), k = 40% (recovery rate), and L = 0 (borrowing constraint). For the expected

consumption growth rate and volatility of consumption growth rate, µI and σI , and stock volatility, σ, we have

used the century-long sample (1891-1994) by Campbell (1999).

Marginal Propensities to Consume (MPC) Numbers. In our theoretical analysis on

the equilibrium MPC by Theorem 4.5, we have shown that the income-disaster-perceived

effective interest rate plays a dominating role in the MPC characterization and in particular,

the precautionary savings due to income disaster importantly account for the MPC. In our

substantial precautionary savings context with income disaster, we theoretically expect
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greater consumption responses to changes in wealth.

Without income disaster, the generated MPC values could not reconcile with the em-

pirically plausible MPC ranges (12% to 30% by Parker et al., 2013; 20% to 60% by Carroll

et al., 2017; 10% by Fisher et al.).34 This is because without income disaster consump-

tion responses to changes in wealth and income are not very significant for consumption

smoothing, as identified in Wang (2003) without income disaster. However, consistent

with our theoretical expectation on the MPC behavior with income disaster, our MPC

with income disaster can generate even much higher than 8% with just 1% income disaster

intensity (Figure 4), which can be quite close to the low end of the MPC range (Fisher et

al., 2019).

Figure 4: Equilibrium Marginal Propensity to Consume (MPC). Parameter Values: β = 4% (subjective

discount rate), γ = 3 (risk aversion), µI = 1.74% (expected consumption growth rate), σI = 3.26% (volatility of

consumption growth rate), σ = 18.53% (stock volatility), w = 1 (initial wealth), I = 1 (aggregate output), ξ = 0.5

(fraction constituting aggregate earnings), and L = 0 (borrowing constraint). For the expected consumption growth

rate and volatility of consumption growth rate, µI and σI , and stock volatility, σ, we have used the century-long

sample (1891-1994) by Campbell (1999). Wang (2003) is obtained by the result that the MPC equals to the

equilibrium interest rate.

34Figure 4 demonstrates that the benchmarked Wang (2003)’s MPC without income disaster is around

4% as most macroeconomic models have commonly used, which is quite far from the empirical ranges.
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Interestingly, our income recovery parameter k in the event of income disaster turns

out to further increase the MPC values. This is because a higher k obviously reduces the

amount of the risk premium against income disaster, which results in the smaller market

price of income disaster ln(δ̂/δ) = 0 (or equivalently, the smaller δ̂ − δ) in Theorem 4.5.

This reduced market price result increases the equilibrium interest rate as in the absence

of income disaster, which therefore increases the MPC as identified in Theorem 4.5. We

then have some policy implications here. In terms of promoting individual consumption

especially when hit by income disasters caused by financial crisis, natural catastrophes,

pandemics, etc., the effectiveness of government fiscal policy is determined by the extent

to which consumption responds promptly to income changes (and wealth changes, accord-

ingly). That is, the explicit efforts by governments should, thus, focus on greater access to

(private) insurance and a wide range of government safety nests for individuals to increase

their resilience against income disaster. A higher recovery k against income disaster is

closely associated with greater consumption responses (MPC) to changes in income and

wealth according to our model results.

Household Savings. The large additional precautionary savings term induced by in-

come disaster as quantitatively identified in Theorem 3.2 and Definition 3.1 should have

implications for households’ optimal savings behavior.

In an attempt to better understand the low-consumption-high-savings puzzle, one po-

tential avenue would be to consider an international setting with an extreme simplifica-

tion as follows. The agent with high disaster exposure represents developing third world

countries that depend crucially on the production of commodities whose prices are more

susceptible to disaster-like movements. The agent with low disaster exposure represents

developed countries that handle most of the manufacturing. In this context, we highlight

how different exposure to income disaster in developing and developed countries affects

household savings decisions especially with the precautionary savings mechanism in both

partial equilibrium and general equilibrium.

We find in partial equilibrium that households in developing countries who encounter
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Figure 5: Precautionary savings in partial equilibrium. Parameter Values: arameter values: r = 0.02 (risk-

free rate), β = 0.04 (subjective discount rate), µ = 0.06 (expected stock return), σ = 0.20 (stock volatility), γ = 2

(risk aversion), ε = 1 (income), k = 40% (recovery rate), and L = 0 (borrowing constraint). Note: The dotted

line represents precautionary savings of households in developing countries who are exposed to 1% income disaster

possibility. The solid line represents the savings in developed countries who are not exposed to income disaster.

income disaster tend to maintain at high savings rates for all levels of wealth relative

to those in developed countries who are free from income disaster and maintaining at a

constant savings rate (Figure 5). The discrepancy of savings rates between developing

and developed countries decreases with wealth, because the ability of self-insure against

income disaster improves when wealth is large, so precautionary savings decrease as wealth

increases.

We find in general equilibrium that households in developing countries tend to con-

sume less and save more than those in developed countries, helping to better explain the

low-consumption-high-savings puzzle (Figure 6). Notably, the discrepancies of consump-

tion and savings rates in general equilibrium between developing and developed countries

increase with income disaster possibility.

Having theoretically understood both partial and general equilibrium implications of

income disaster on consumption and savings decisions of households in developing and
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Figure 6: Precautionary savings in general equilibrium. Parameter Values: β = 4% (subjective discount

rate), γ = 3 (risk aversion), µI = 1.74% (expected consumption growth rate), σI = 3.26% (volatility of consumption

growth rate), σ = 18.53% (stock volatility), w = 1 (initial wealth), I = 1 (aggregate output), ξ = 0.5 (fraction

constituting aggregate earnings), k = 40% (recovery rate), and L = 0 (borrowing constraint). For the expected

consumption growth rate and volatility of consumption growth rate, µI and σI , and stock volatility, σ, we have

used the century-long sample (1891-1994) by Campbell (1999).

developed countries, we can therefore generate empirically testable implications of income

disaster. First, it would be interesting to investigate whether both lower consumption

and higher savings rates can be induced indeed in developing countries especially during

the challenging times caused by the 2008 global financial crisis and the recent COVID-19

pandemic, when income disaster has been differently evidenced and most of low-income

developing countries would struggle to manage income disaster with limited access to in-

surance and a wide range of government safety nets and social security programs against a

large, negative income shock triggered by income disaster. Second, it would be also inter-

esting to investigate how different exposure to income disaster in developing and developed

countries affects household consumption and savings choices. Such a differential income

disaster exposure may turn out to explain a large part of the savings rate gap between

developing and developed countries.

Asset Pricing Exercise. Incorporating income disaster, our equilibrium results are

matched up with the observed risk-free rate and equity premium. We have tried to match
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our model with the century-long sample from 1891 to 1994 by Campbell (1999) and the

long historical sample from 1871 to 2011 by the website of Robert Shiller (Table 1).35

The presence of income disaster dramatically improves the model’s ability to match asset

prices. The standard asset pricing framework by Lucas (1978) without income disaster re-

quires negative values for the subjective discount rate which are not empirically plausible

in order to obtain the risk-free rate of 1.74% (1.48%) which is lower than the observed

rate of 1.96% (2.8%) from the century-long sample (the long historical sample). While the

risk-free rate of 1.96% (2.8%) generated by our framework with income disaster is exactly

the same with that observed from the century-long sample (the long historical sample),

and thereby requiring empirically plausible parameters as follows: income disaster shock

δ = 1% (δ = 4.5%), subjective discount rate β = 1.65% (β = 1%), risk aversion γ = 10

(γ = 9).36

The intuitive interpretation of our improved ability to match the observed asset prices

is the income-disaster-exposed agent’s optimal savings decision that discourages equity

demand so that the equity premium increases. The risk-free rate instead decreases due to

the agent’s high savings.

Table 2 reports the estimated consumption and return parameter values from four

sample periods: 1889-1978 (Lucas, 1994), 1890-1997 (Gomes and Michaelides, 2008), 1929-

2009 (Constantinides and Ghosh, 2017), and 1930-2008 (Schmidt, 2016).

Table 3 tests our model with four representative data periods considered by Lucas

(Lucas, 1994), GM (Gomes and Michaelides, 2008), CG (Constantinides and Ghosh, 2017),

and Schmidt (Schmidt, 2016) who all focus on asset pricing implications of unhedgeable

income risk. The second last column of each table reports the number of model parameters

used to match asset prices. The details are as follows:

• Lucas (1994) uses 5 model parameters: discount rate β, risk aversion γ, income

shocks, short sale constraint, borrowing constraint

35Refer to http://www.econ.yale.edu/∼shiller/data/chap26.xls.
36According to Mehra and Prescott (1985), the upper bound of risk aversion is known as 10.
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Estimated consumption and return parameters 1891-1994 1871-2011

Expected consumption growth rate µI 1.74% 2.3%

Consumption volatility σI 3.26% 3.3%

Stock Volatility σ 18.53% 18.2%

Risk-free rate r 1.96% 2.8%

Equity premium µ− r 6.26% 5.2%

(a) Data

Required parameters 1891-1994 1871-2011

Income Disaster δ 0 1% 1% 10% 0 4.5% 5.5% 10%

Recovery k − 40% 50% 60% − 40% 50% 60%

Discount rate β −9.81% 1.65% 0.5% 0.5% −15.53% 1% 0.5% 0.5%

Risk aversion γ 10 10 10 10 9 9 9 9

Model-generated equilibrium quantities 1891-1994 1871-2011

Risk-free rate 1.74% 1.96% 2.49% 2.50% 1.48% 2.8% 3.4% 4.2%

Equity premium 6.04% 6.04% 6.04% 6.04% 6.0% 5.4% 5.4% 5.4%

(b) Model results with required parameters

Table 1: Table (a) reports the annualized parameter values for consumption and return for the century-long sample

(1891-1994) by Campbell (1999) and the long historical sample (1871-2011) by the website of Robert Shiller

(http://www.econ.yale.edu/∼shiller/data/chap26.xls). Table (b) reports a comparison of the model-generated

equilibrium results from the model without income disaster (δ = 0) and the model with income disaster (δ > 0).

Estimated consumption and return parameters 1889-1978 1890-1997 1929-2009 1930-2008

Expected consumption growth rate µI 1.8% 1.7% 2.0% 1.93%

Consumption volatility σI 3.7% 3.3% 2.0% 2.16%

Stock Volatility σ 16.7% 19.81% 18.7% 20.28%

Risk-free rate r 1.0% 1.58% 0.6% 0.57%

Equity premium µ− r 6.0% 6.74% 7.0% 7.09%

Table 2: Table reports the estimated consumption and return parameter values from sample periods: 1889-1978

(Lucas, 1994), 1890-1997 (Gomes and Michaelides, 2008), 1929-2009 (Constantinides and Ghosh, 2017), and 1930-

2008 (Schmidt, 2016).

• Gomes and Michaelides (2008) use 6 model parameters: discount rate β, risk aversion

γ, two EIS (ψ) parameters for two different type agents, deviation of productivity

shock, standard deviation of income shock
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Model results Required parameters Number

Models Risk-free Equity premium Income Disaster Recovery Discount Risk aversion of MSE

rate r µ− r δ k rate β γ parameters %

Data 1.0% 6.0% − − − − − −

Lucas 9.3% 0.7% − − 5.0% 2.5 5 0.4849

Ours 3.8% 1.9% 5.0% 40% 5.0% 3 4 0.1233

Ours 1.0% 6.0% 5.0% 29% 1.0% 9.7 4 0

(a) Model results with required parameters (1889-1978)

Model results Required parameters Number

Models Risk-free Equity premium Income Disaster Recovery Discount Risk aversion EIS of MSE

rate r µ− r δ k rate β γ ψ parameters %

Data 1.58% 6.74% − − − − − − −

GM 2.58% 3.83% − − 1.0% 5 0.6 6 0.0473

Ours 2.20% 3.27% 5.0% 40% 1.0% 5 − 4 0.0621

Ours 1.58% 6.74% 1.9% 40% 1.0% 10.31 − 4 0

(b) Model results with required parameters (1890-1997)

Model results Required parameters Number

Models Risk-free Equity premium Income Disaster Recovery Discount Risk aversion EIS of MSE

rate r µ− r δ k rate β γ ψ parameters

Data 0.6% 7.0% − − − − − − −

CG 2.5% 4.9% − − 1.7% 5.05 1.10 14 0.0401

CG 4.2% 3.6% − − 1.3% 14.7 − 14 0.1226

Ours 3.1% 5.6% 1.0% 40% 1.3% 15 − 4 0.0411

Ours 1.5% 7.1% 1.0% 10% 1.3% 19 − 4 0.0041

(c) Model results with required parameters (1929-2009)

Model results Required parameters Number

Models Risk-free Equity premium Income Disaster Recovery Discount Risk aversion EIS of MSE

rate r µ− r δ k rate β γ ψ parameters

Data 0.57% 7.09% − − − − − − −

Schmidt 0.46% 6.46% 8.0% 49% 2.55% 11 2 21 0.0020

Ours 2.90% 4.82% 5.0% 40% 2.55% 11 − 4 0.0529

Ours 1.02% 7.01% 5.0% 10% 2.55% 16 − 4 0.0001

(d) Model results with required parameters (1930-2008)

Table 3: Table compares our model with four representative general equilibrium models considering unhedgeable

income risk by Lucas (Lucas, 1994), GM (Gomes and Michaelides, 2008), CG (Constantinides and Ghosh, 2017),

and Schmidt (Schmidt, 2016).

• Constantinides and Ghosh (2017) use 14 model parameters: 3 preference parameters

of discount rate β, risk aversion γ, EIS (ψ), 3 parameters for income shocks, 2

parameters of mean and volatility of aggregate consumption growth, 3 parameters for

state variable dynamics, 3 parameters governing aggregate dividend growth dynamics
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• Schmidt (2016) uses 21 model parameters including 3 preference parameters of dis-

count rate β, risk aversion γ, EIS (ψ), and 4 parameters for consumption and income

shocks such as income shock intensity δ37

• Our model uses 4 model parameters: discount rate β, risk aversion γ, income disaster

δ, recovery k

The last column of each table reports the mean square error (MSE) which is the average

squared difference between the observed risk-free rate and equity premium (Data) and the

model-generated rates (Model). The last two rows labeled by “Ours” of each table reports

the optimized our model results to match asset prices by minimizing the sum of the squared

relative errors between the historical rates and our model-generated rates. Overall, we find

the incremental contribution to the ability to match asset prices, thus demonstrating the

pivotal role of income disaster in matching asset prices.

6 General Cases

6.1 Repeated income disasters

The income disaster assumption we have considered so far is restrictive by having only one-

time income disaster. In this assumption, the uncertainty faced by the agent stems from

the random arrival of one-time income disaster. Once income disaster occurs, it will never

happen again and hence, the agent goes back to living in the business as usual economy

with diversifiable diffusive-type output uncertainty only. In reality, however, agents still

anticipate occurrence of income disasters even after income disaster occurs in the past,

suffering from sudden shocks causing their income to be equal to a fraction of its current

level. It is therefore more realistic to consider an environment where income disasters can

happen repeatedly. The rare disaster literature has been thinking about large disaster risks

as recurring events that repeat over time (e.g., world wars, the great depression, etc.). As

37Refer to Table 3 Summary of Parameters for the Quantitative Model in Schmidt (2016).
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a generalization of time-varying rare disasters by Gabaix (2008, 2012) and Wachter (2013),

we consider that time-varying income disasters are state dependent as well. This is because

income disasters fluctuate in extreme scenarios (e.g., financial distress, market crashes,

pandemic outbreak etc.), so arrival rates of Poisson shocks should be state dependent.

Given that repeated income disasters with time-varying state-dependent intensity are even

worse than the one-time disaster with constant intensity, the economy could generate even

more precautionary savings motive caused by income disasters.

For simplicity, we suppose that there are two states: the good state G and the bad

state B. Over a small time period (t, t + ∆t), the state switches from the good state G

(B) to the bad state B (G) with probability φG∆t (φB∆t) if the current state is G (B),

and stays unaltered with the remaining probability 1− φG∆t (1− φB∆t).

In the presence of time-varying state-dependent income disasters, the aggregate output

process I(t) is modeled by a geometric Brownian motion with a general Poisson process as

follows:

dI(t) = µII(t−)dt+ (σI)>I(t−)dZ(t)− (1− k)I(t−)dNG(t), I0 = I > 0,

where NG(t) is the Poisson process with time-varying and state-dependent intensity δi(t),

i ∈ {G,B}. The dynamics of the intensity δi(t) are assumed to follow in the state i,

(i ∈ {G,B}),

dδi(t) = aiδi(t)dt+ biδi(t)dZδ(t), δi(0) = δi > 0,

where ai < 0 is the intensity’s growth rate, bi is the intensity volatility, and Zδ(t) is a

standard one-dimensional Brownian motion that is correlated with Z(t) as dZ(t) ·dZδ(t) =

(ρi)>dt, where ρi = (ρi1, ρ
i
2, ..., ρ

i
n)>, ρij ∈ [−1, 1] (j = 1, 2, ..., n). For simplicity, we set

ai = −δi. If we further set b = 0, the intensity δi(t) then reduces to δi(t) = δie−δ
it, which

is the probability density function of an exponential distribution with constant intensity

δi.

The agent’s value function with repeated income disasters driven by time-varying state-
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dependent intensity is given by: in the state i, (i ∈ {G,B}),

V i(w, I) ≡ sup
(c,π)

E
[ ∫ τ i

0

e−βt
c(t)1−γ

1− γ
dt+ e−βτ

i

V j(w, I)
]
, (19)

subject to (3) and (4), where τ i is the first jump time of state changing since the beginning

of the state i and V j(w, I) is the value function in the state j 6= i.

The following theorem shows the endogenously determined SDF in an incomplete mar-

ket caused by time-varying state-dependent income disasters.

Theorem 6.1 The SDF in an incomplete market caused by time-varying state-dependent

income disasters is endogenously determined as follows: in the state i, (i ∈ {G,B}),

ξ δ̂
i,φ̂i(t) = exp

{
ln
( δ̂i
δi

)
NG(t)− (δ̂i − δi)t

}
exp

{
ln
( φ̂i
φi

)
1{τ i=t} − (φ̂i − φi)t

}
H(t),

where δ̂i and φ̂i are the risk-neutral income disaster intensities given by

δ̂i = δik−γ
z(y/k)

z(y)

and

φ̂i = φi
zj(y)

z(y)
,

z(y) is the dual variable corresponding to wealth-to-income ratio y = w/(ξI) by their

relation as follows

y +
1

βi1
= Gi

(
z(y)

)
, (20)

βi1 = r − µI + (σI)>(θ + ρibi),

and Gi

(
z(y)

)
is given in Proposition L.1.

Theorem 6.1 derive expressions for the endogenous SDF implied by recurrent disasters

that is analytically tractable. Using Itô’s formula, we obtain before income disaster occurs

the following SDF dynamics in the state i (i ∈ {G,B}): for t < τ i,

dξ δ̂
i,φ̂i(t) = −ξ δ̂i,φ̂i(t)[{r + (eln(δ̂i/δi) − 1)δ + (eln(φ̂i/φi) − 1)φi}dt+ θ>dZ(t)]

= −ξ δ̂i,φ̂i(t)[{r + (δ̂i − δi) + (φ̂i − φi)}dt+ θ>dZ(t)],
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which demonstrates the impact of repeated state-dependent income disasters affecting the

SDF with adjustments of the risk-free interest rate by the magnitude of market price of

income disaster ln(δ̂i/δi) and the magnitude of market price of state changing ln(φ̂i/φi).

The distinct point of repeated income disasters from the one-time income disaster results

from the additional adjustment in the SDF dynamics by the market price of state changing.

Provided that the market prices of income disaster and state changing are positive, i.e.,

when δ̂i > δi and φ̂i > φi, the equilibrium consumption price measured as the SDF in

Theorem 6.1 becomes even more expensive in the future compared to the case for which

the one-time income disaster is considered only. This could therefore give rise to even

more precautionary savings motive with repeated income disasters than with the one-time

income disaster by giving up much more consumption now to meet future consumption

demands.

Theorem 6.2 The optimal consumption strategy c∗ ≡ c(0) and the optimal investment

strategy π∗ ≡ π(0) of the income-disaster-exposed agent in the state i, (i ∈ {G,B}) are

derived analytically as follows

c∗ =
(
Âi +

δi + φi

γ

)(
w +

ξI

βi1
− ξIB∗i z−α

∗
i − IPi

)
,

π∗ =
1

γ
σ−1(θ + ρibi)w

+
1

γ
σ−1(θ + ρibi − γσI)

[ξI
βi1

+ (γα∗i − 1)ξIB∗i z
−α∗i

− 2γφizj
||βi3||2z

(
w +

ξI

βi1

)
− 2γδik1−γ

||βi3||2z
ξIvi

(Gi(z)− 1/βi1
k

)
+ (γαi − 1)× IP1i + (γα∗i − 1)× IP2i

]
,

where

βi1 = r − µI + (σI)>(θ + ρibi),

βi3 = γ(σI)> − (θ + ρibi)>,

z is the dual variable corresponding to wealth-to-income ratio y = w/(ξI) by their relation

(20), B∗i is a constant to be determined by (A-52), and IPi = IP1i + IP2i represents the

integral parts given by (A-57).
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The income-disaster-exposed agent’s optimal strategies with repeated income disasters

that are fully analytic are useful for quantitatively identifying the income-disaster-induced

precautionary savings as similar to Definition 3.1.

Theorem 6.3 Before income disaster occurs, the equilibrium equity expected return and

volatility in the economy d with the agent n and the agent d are given by

µem,id = β − (δ̂i − δi)− (φ̂i − φi) + γµI − 1

2
||σI ||2γ(γ − 1) and σemd = σI ,

and the equilibrium risk-free interest rate and Sharpe ratio are given by

rid = β − (δ̂i − δi)− (φ̂i − φi) + γµI − 1

2
γ(γ + 1)||σI ||2 and θd = γσI ,

where i ∈ {G,B}. Consequently, the equilibrium equity premium is given by

µem,id − rid = γ||σI ||2,

where i ∈ {G,B}.

The negative impact of income disaster that we have analyzed in Theorem 4.3 could be

even more reinforced if one considered repeated income disasters instead of the one-time

income disaster. Both the market price of income disaster (δ̂i− δi) and the market price of

state changing (φ̂i − φi) contribute to further decrease in the equilibrium risk-free interest

rate.

Theorem 6.4 The agent d’s equilibrium MPC out of financial wealth in the state i (i ∈

{G,B}) is given by

MPCi = rid + δi + φi − µI + γ||σI ||2 +
δ̂i − δi

γ
+
φ̂i − φi

φi
.

Repeated income disasters are much harder to buffer than the one-time income disaster

because the likelihood of future income disaster does change in this general model. So,

readiness for income disasters requires even larger amount of savings for consumption

smoothing across states and as a result, the MPC rises further with repeated income

disasters.
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6.2 Uninsurable diffusive and continuous income shocks

We have so far developed an income disaster model generating a strong precautionary

savings motive rationalizing simultaneously the equity premium puzzle and the risk-free

rate puzzle, and matching the empirical MPC. The necessary ingredient here is jumps into

labor income. In this section, we clarify why a regular Brownian motion type of income

risk with enough volatility that does not consider income disaster cannot produce the same

results.

We assume that the aggregate output uncertainty is partially correlated with the market

so that it follows

dI(t) = µII(t)dt+ σII(t)dZ̃(t),

where µI is the constant output mean, σI is the constant output volatility, and Z̃(t) is the

standard one-dimensional Brownian motion which is correlated with Z(t) in the market as

dZ(t)dZ̃(t) = ρ>dt, ρ = (ρ1, ρ2, ..., ρn)>, ρi ∈ [−1, 1] (i = 1, 2, ..., N). By Levy’s theorem,

there then exists the one-dimensional Brownian motion ZI(t) which is independent of Z(t)

with the following relation:

Z̃(t) = ρ>Z(t) +
√

1− ||ρ||2ZI(t),

where ||ρ||2 =
∑N

i=1 ρ
2
i . Hence, the aggregate output is now evolved by

dI(t) = µII(t)dt+ σIρ>I(t)dZ(t) + σI
√

1− ||ρ||2I(t)dZI(t),

where ZI(t) can be regarded as uninsurable diffusive and continuous income shocks to the

aggregate output.

The following theorem endogenously determines the SDF in an incomplete market

caused by uninsurable diffusive and continuous income shocks.

Theorem 6.5 The SDF in an incomplete market caused by the uninsurable diffusive and

continuous income shocks ZI(t) is endogenously determined with the following dynamics:

dHζ(t) = −Hζ(t){rdt+ θ>dZ(t) + ζdZI(t)}, Hζ(0) = 1,
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where ζ is the market price of uninsurable income shocks given by

ζ = σI
√

1− ||ρ||2 + σI
√

1− ||ρ||2G(z)− 1/β̃1

zG′(z)
,

β̃1 = r − µI + σIρ>θ,

and G(z) is given in Appendix L.2.

The SDF with uninsurable diffusive and continuous income shocks given in Theorem

6.5 reduces to the canonical SDF in the complete market when there is no aggregate output

uncertainty with σI = 0 and/or when the aggregate output is spanned by the market with

||ρ||2 = 1, which results in the zero market price of uninsurable income shocks ζ = 0 so

that Hζ(t) = H(t). Unlike the income disaster model, uninsurable income shocks do not

involve any adjustment of the risk-free interest rate implying that the equilibrium risk-free

interest rate is not altered by the income shocks, which is the so-called irrelevance result

by Krueger and Lustig (2010).38 Therefore, income disasters resulting in large, negative

jumps in income are crucial for the decrease of the risk-free rate.

7 Conclusion

We have developed an analytically tractable continuous-time income disaster model with

optimal consumption. The stochastic discount factor in an incomplete market caused by

income disaster is endogenously determined, thus explicitly characterizing optimal con-

sumption decisions for two types of agent, one who is exposed to income disaster and

another who is not. There is a large additional precautionary savings term in our model

which pushes the interest rate down and helps to resolve the risk-free rate puzzle. Inter-

estingly, we find that the equilibrium interest rate is a decreasing function of risk aversion

38The uninsurable income shocks driven by Brownian motions that are unspanned by the market do

lower the equilibrium risk-free rate especially when agents have preference heterogeneity in risk aversion

(Christensen et al., 2012). In contrast to Christensen et al. (2012), we consider the simplest possible

economic setup with no risk aversion heterogeneity so that unspanned Brownian-type income risks are

irrelevant for the equilibrium interest rate, consistent with Krueger and Lustig (2010).
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while the equity premium is an increasing function, helping to disentangle the risk-free rate

puzzle from the equity premium puzzle. We also find that our substantial precautionary

savings mechanism allows large consumption responses to changes in wealth and hence, the

model-generated MPCs are quite close to the empirical MPCs. Finally, the precautionary

savings motives help to understand the low-consumption-high-savings puzzle.

Many interesting extensions to this model should prove relatively possible. A first

important extension would be to allow for housing asset in the model. Approximately

two-thirds of U.S. households own their primary residence and for many of them, housing

asset is the largest single asset in their household portfolio. So, a sudden shock possibly at

times of economic recessions to cause a negative or downward large drop in house prices

would have a large impact on the agent’s life-cycle consumption and portfolio decisions.

Incorporating such housing disaster in the framework of optimal portfolio choice with

house prices (e.g., Corradin et al., 2013) is of particular interest on general equilibrium

implications because it would allow us to investigate how the properties of returns change

over disastrous fluctuations in house prices.

A second extension of the model would be to consider various household heterogeneity

observed in the real world (e.g., education, wealth, income, consumption, risk aversion,

etc.). For instance, this paper would be greatly generalized if we can introduce risk aversion

heterogeneity for asset pricing (e.g., Garleanu and Panageas, 2015) especially before and

after income disaster occurrence (e.g., involuntary permanent retirement) while keeping

the market incomplete. By doing so, we feature income disaster as an exogenous source of

risk aversion heterogeneity, thus investigating the new insights on asset pricing that obtain

by risk aversion heterogeneity.

A third extension of the model would be to understand the income disaster channel in

habit models. It is well known that individuals are inclined to reluctant to deviate from

their past consumption paths especially at times of economic downturns (Cochrane, 2017).

Recessions followed by income disaster can be naturally invoked to rationalize habit models

and hence, it can be reasonably conjectured that consumption adjustments would be larger

responding to income disaster than without habit, and the portfolios geared more towards

45



riskless bond because of the added habit, thus helping to resolve the risk-free rate puzzle

well.
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Appendix

A A Two-period Model

We establish a simple two-period model with a jump-type income shock. We consider a repre-

sentative economic agent who aims to attain her optimal consumption and investment strategies

over the two periods: period 0 and period 1. The agent dies at the end of period 1 and the

probability of her survival until period 1 is δ1. The objective of the agent is to maximize the

following utility function by optimally controlling consumptions c0 and c1 at period 0 and at

period 1, respectively:

v(c0) + δ2E[v(c1)],

where v is a strictly increasing, strictly concave real-valued function defined on the set of positive

real numbers, 0 < δ2 < 1 is the subjective discount factor, and E denotes the expectation taken

at period 0.

There are two tradable financial assets: a riskless bond and a risky stock. The riskless bond

pays 1 at period 1 and its price is
1

R
at period 0, where R > 0 is the risk-free interest rate.

The price of a share of the risky stock is 1 at period 0 and can be u and d (u > R > d > 0)

with probabilities πu and πd = 1 − πu, respectively, at period 1. The agent obtains aggregate

earnings at the rate of ε in each period. There is a jump shock in her earnings that would cause

a significant downward jump in earnings from ε to 0 at period 1 with the probability of p. The

probability distributions of the agent’s mortality, the stock price, and the jump shock are assumed

to be independent.

The budget constraint during period 1 is described as the following: for i ∈ {u, d},

W1i =


RwB0 + iwS0 + ε, if the income shock does not occur,

RwB0 + iwS0 , if the income shock occurs,

where wB0 is the dollar amount of savings invested in the riskless bond during period 0, and wS0

is the dollar amount of savings invested in the risky stock during period 0.

The optimal consumption strategy c1i at period 1 for i ∈ {u, d} is to consume all of wealth
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W1i available at period 1 i.e., c1i = W1i. The budget constraint during period 0 is given by

W0 + ε = c0 + wB0 + wS0 ,

where c0 is the optimal consumption strategy at period 0.

The agent’s optimization problem at period 0 is formulated by the following value function:

max
(wB0 ,w

S
0 )

[
v
(
W0 + ε− wB0 − wS0

)
+ δ2Ev

(
W1

)]
= max

(wB0 ,w
S
0 )

[
v
(
W0 + ε− wB0 − wS0

)
+ δ(1− p)

{
πuv

(
RwB0 + uwS0 + ε

)
+ πdv

(
RwB0 + dwS0 + ε

)}
+ δp

{
πuv

(
RwB0 + uwS0

)
+ πdv

(
RwB0 + dwS0

)}]
,

where δ ≡ δ1δ2. The first-order conditions for wB0 and wS0 are given by

v
′
(
W0 + ε− wB0 − wS0

)
= (1− p)δR

{
πuv

′
(
RwB0 + uwS0 + ε

)
+ πdv

′
(
RwB0 + dwS0 + ε

)}
+ pδR

{
πuv

′
(
RwB0 + uwS0

)
+ πdv

′
(
RwB0 + dwS0

)}
and

v
′
(
W0 + ε− wB0 − wS0

)
= (1− p)δ

{
πuv

′
(
RwB0 + uwS0 + ε

)
u+ πdv

′
(
RwB0 + dwS0 + ε

)
d
}

+ pδ
{
πuv

′
(
RwB0 + uwS0

)
u+ πdv

′
(
RwB0 + dwS0

)
d
}
,

respectively.

To obtain analytically tractable optimal strategies, we assume the simplest possible utility

function: v is quadratic and it is given by

v(c) = c− γ

2
c2,

where γ is a positive constant. Then the first-order conditions become linear equations and we

can derive in closed-form the optimal strategies as the following:

wB0 =
[
δ{−1 + γ(W0 + ε)}{uπu(u−R)− dπd(R− d)}

+ δ{(1− p)γε− 1}{(uπu + dπd −R)− δRπuπd(u− d)2}
]

/
γ
[
(1 + δR2){1 + δ(u2πu + d2πd)} − {1 + δR(uπu + dπd)}2

]
,
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wS0 =
[
δ(uπu + dπd −R)

(
R{−1 + γ(W0 + ε)}+ {(1− p)γε− 1}

)]
/
γ
[
{1 + δR(uπu + dπd)}2 − {1 + δR2(πu + πd)}{1 + δ(u2πu + d2πd)}

]
.

Notice that the premium term uπu + dπd −R on the risky stock can be reasonably assumed

to be positive. Then,
wS0
∂p

< 0.

This arguably states that the income shock reduces the dollar amount of savings invested in the

risky stock.

However, we need to investigate whether this result does change relying on the assumptions

under which the utility function is quadratic and only two periods rather than multi periods

are considered. If we relax those assumptions by considering the well-known utility functions

(the constant absolute or relative risk aversion utility function) or multi-period settings, to our

best knowledge, the first-order conditions obtained when deriving optimal strategies turn out to

be highly non-linear, so it is a considerable challenge to solve the problem analytically or even

numerically.

Instead of the discrete time two-period model with the quadratic utility function, we will

now develop a tractable continuous-time model with the constant relative risk aversion (CRRA)

utility function, where all the optimal strategies and general equilibrium quantities are analytically

tractable and derived in closed-form.

B Human Capital Value Calculations

Following Koo (1998), the CEPV can be defined as

CEPV = E
[ ∫ ∞

0
H(t)ξI(t)dt

]
,

where H(t) is the standard SDF that is given in Theorem 3.1 and ξI(t) is the agent’s lifetime

labor income with the following geometric Brownian motion dynamics of I(t):

dI(t) = µII(t)dt+ (σI)>I(t)dZ(t), I(0) = I > 0.

The CEPV is then given by

CEPV =
ξI

β1
,
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where β1 is given in (5), which serves as the human capital with which the agent’s borrowing

limit is bounded from below as in (4).

C Derivation Details behind Problem (8)

Following Merton (1969, 1971), consider the agent’s problem without the Poisson jump

V A(w, I) ≡ sup
(c,π)

E
[ ∫ ∞

0
e−βt

c(t)1−γ

1− γ
dt
]
, (A-1)

subject to

dW (t) = {rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)}dt+ π(t)>σ>dZ(t), W (0) = w > −ξI/β1,

W (t) > −ξI(t)

β1
, for all t ≥ 0.

The problem (A-1) is solved analytically as

V A(w, I) = K
{W (t) + ξI(t)/β1}1−γ

1− γ
,

where

K =
[γ − 1

γ

(
r +
||θ||2

2γ

)
+
β

γ

]−γ
. (A-2)

Now the agent’s new problem with the Poisson jump is given by

V (w, I) ≡ sup
(c,π)

E
[ ∫ τ

0
e−βt

c(t)1−γ

1− γ
dt+ e−βτV A(w, kI)

]
,

where τ represents the arrival of the Poisson shock. After integrating out the Poisson intensity δ,

the problem stated above becomes exactly the same as Problem (8). The derivation details are
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as follows.

V (w, I) = sup
(c,π)

E
[ ∫ τ

0
e−βt

c(t)1−γ

1− γ
dt+ e−βτV A(W (τ), kI(τ))

]
= sup

(c,π)
E
[ ∫ τ

0
e−βt

c(t)1−γ

1− γ
dt+ e−βτK

{W (τ) + kξI(τ)/β1}1−γ

1− γ

]
= sup

(c,π)
E
[ ∫ ∞

0
δe−δs

∫ s

0
e−βt

c(t)1−γ

1− γ
dtds

+

∫ ∞
0

δe−δte−βtK
{W (t) + kξI(t)/β1}1−γ

1− γ
dt
]

= sup
(c,π)

E
[ ∫ ∞

0
e−βt

c(t)1−γ

1− γ

∫ ∞
t

δe−δsdsdt

+

∫ ∞
0

e−(β+δ)δK
{W (t) + kξI(t)/β1}1−γ

1− γ
dt
]

= sup
(c,π)

E
[ ∫ ∞

0
e−(β+δ)t c(t)

1−γ

1− γ
dt+

∫ ∞
0

e−(β+δ)δK
{W (t) + kξI(t)/β1}1−γ

1− γ
dt
]

= sup
(c,π)

E
[ ∫ ∞

0
e−(β+δ)t

(c(t)1−γ

1− γ
+ δK

{W (t) + kξI(t)/β1}1−γ

1− γ

)
dt
]
.

D Proof of Theorem 3.1

We now explicitly characterize stochastic discount factors (SDFs) in our incomplete market caused

by income disaster. The following result is the equivalent result in Blanchet-Scalliet et al. (2005)

to just consider constant intensity of the random time τ . The following result is a straightforward

extension of the result in Blanchet-Scalliet et al. (2005) and is, thus, given without proof.

Lemma D.1 The SDFs are given by

ξδ̂(t) ≡ exp
{

ln
( δ̂
δ

)
N(t)− (δ̂ − δ)t

}
H(t), (A-3)

where H(t) is the standard SDF in complete markets under no arbitrage and its dynamics are

given by

dH(t) = −H(t){rdt+ θ>dZ(t)}, H(0) = 1,

and δ̂ is the risk-neutral intensity to be determined.
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We use ξδ̂(t) to change the measure. We define

P̃ (A) ≡
∫
A
ertξδ̂(t, ω)dP (ω) for all A ∈ G. (A-4)

In the following lemma, we can establish the Brownian motion process under the probability

measure P̃ .

Lemma D.2 Under the probability measure P̃ , the process

Z̃(t) ≡ θdt+ Z(t)

is a Brownian motion and N(t) is a Poisson process with intensity δ̂.

Proof. We need to show that Z̃(t) and N(t) have the correct joint moment-generating function

under P̃ . So, we must show

Ẽ[eu1Z̃(t)+u2N(t)] = e
1
2
u21t exp{δ̂t(eu2 − 1)},

where e
1
2
u21t is the moment-generating function for a normal random variable with mean zero and

variance t and expδ̂t(e
u2−1) is the moment-generating function for a Poisson process with intensity

δ̂. We can obtain the following independence-based computation:

Ẽ[eu1Z̃(t)+u2N(t)]

= E[eu1Z̃(t)H(t)]E
[
eu2N(t) exp

{
ln
( δ̂
δ

)
N(t)− (δ̂ − δ)t

}]
= e

1
2
u21te(δ−δ̂)tE

[
exp

{(
u2 + ln

δ̂

δ

)
N(t)

}]
= e

1
2
u21te(δ−δ̂)t exp

{
δt
(
eu2+ln(δ̂/δ) − 1

)}
= e

1
2
u21t exp{δ̂t(eu2 − 1)},

which completes the proof. Q.E.D.

For a fixed δ̂, we provide a lemma to convert the dynamic wealth constraint in (3) into the

static wealth constraint as follows.

Lemma D.3 For a fixed δ̂, the dynamic wealth constraint (3) can be converted into the following

static wealth constraint:

E
[ ∫ ∞

0
e−δ̂tH(t)

(
c(t)− ξI(t) + δ̂W (t)

)
dt
]
≤ w.
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Proof. By applying Itô’s formula to d
(
e−rtW (t)

)
yields

d
(
e−rtW (t)

)
= −e−rt{c(t)− ξI(t)}dt+ e−rtπ(t)>dZ̃(t), (A-5)

where Z̃ is the Brownian motion process by Lemma D.2 under the new martingale measure (A-4)

with respect to the SDF ξδ̂(t) given in Lemma D.1. Integrating the both sides of (A-5) from 0 to

τ , ∫ τ

0
e−rt

(
c(t)− ξI(t)

)
dt+ e−rτW (τ) = w +

∫ τ

0
e−rtπ(t)>dZ̃(t).

Taking expectation Ẽ under the new martingale measure,

Ẽ
[ ∫ τ

0
e−rt

(
c(t)− ξI(t)

)
dt+ e−rτW (τ)

]
≤ w.

Changing the martingale measure into the physical measure using the relationship (A-4),

E
[ ∫ τ

0
ξδ̂(t)

(
c(t)− ξI(t)

)
dt+ ξδ̂(τ)W (τ)

]
≤ w.

Integrating out the Poisson intensity δ with respect to τ using the conditional expectation com-

pletes the proof of the lemma. Q.E.D.

Remark. Lemma D.3 implies that the unique δ̂ to be found (resulting in the unique SDF by

Lemma D.1) should lead ∫ τ

0
e−rt

(
c(t)− ξI(t)

)
dt+ e−rτW (τ)

to be a martingale under the probability measure P̃ by (A-4) so that the following risk-neutral

pricing formula for the agent’s wealth is obtained:

w = Ẽ
[ ∫ τ

0
e−rt

(
c(t)− ξI(t)

)
dt+ e−rτW (τ)

]
,

which guarantees that the agent’s optimal wealth process W (t) is self-financed by the agent’s

optimal consumption choice c(t).

With the help of Lemma D.3, the original dynamic problem (8) can be converted into the

following static problem:

V (w, I) = sup
(c,W )

E
[ ∫ ∞

0
e−(β+δ)t

(c(t)1−γ

1− γ
+ δK

{W (t) + kξI(t)/β1}1−γ

1− γ

)
dt
]
, (A-6)
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subject to the following static budget constraint for a fixed δ̂:

E
[ ∫ ∞

0
e−δ̂tH(t)

(
c(t)− ξI(t) + δ̂W (t)

)
dt
]
≤ w.

We then introduce a lemma to reformulate the problem (A-6).

Lemma D.4 The static optimization problem (A-6) can be reformulated as

V (w, I) = inf
(λ,δ̂)
{J δ̂(λ, I) + λw} = inf

λ
{inf
δ̂
J δ̂(λ, I) + λw} ≡ inf

λ
{J(λ, I) + λw}, (A-7)

where the indirect value function J δ̂(λ, I) is given by

J δ̂(λ, I) = (ξI)1−γẼ
[ ∫ ∞

0
e−(β2+δ)t

{ γ

1− γ

(
1 + (δK)1/γ δ̂1−1/γ

)
Γδ̂(t)1−1/γ +

(
1 +

δ̂k

β1

)
Γδ̂(t)

}
dt
]

≡ (ξI)1−γϕδ̂(z)

(A-8)

with z = λ(ξI)γ, where Ẽ is the expectation under the new probability measure defined as

P̃ (A) ≡
∫
A

exp
(
− 1

2
(1− γ)2||σI ||2(t, ω) + (1− γ)(σI)>Z(t, ω)

)
dP (ω) for all A ∈ G

with the new Brownian motion process Z̃ given by

Z̃(t) = −(1− γ)σIt+ Z(t),

Γδ̂(t) is a new state variable defined by

Γδ̂(t) ≡ λe(β+δ−δ̂)tH(t)(ξI(t))γ ,

and its dynamics are given by

dΓδ̂(t) = Γδ̂(t){−(β δ̂1 − β2)dt+ β3dZ̃(t)}

with

β δ̂1 ≡ r − µI + (σI)>θ + δ̂ − δ,

β2 = β − (1− γ)µI +
1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>.

(A-9)
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Proof. Using the standard Lagrangian approach, we can construct the indirect value function,

J δ̂(λ, I), and it is given by

J δ̂(λ, I) ≡ sup
(c,W )

E
[ ∫ ∞

0
e−(β+δ)t

(c(t)1−γ

1− γ
+ δK

{W (t) + kξI(t)/β1}1−γ

1− γ

)
dt
]

−λE
[ ∫ ∞

0
e−δ̂tH(t)

(
c(t)− ξI(t) + δ̂W (t)

)
dt
]
.

(A-10)

Applying the first-order conditions for consumption c(t) and wealth W (t) gives rise to

c(t) =
(
λe(β+δ−δ̂)tH(t)

)−1/γ
,

W (t) =
(
λe(β+δ−δ̂)tH(t)

)−1/γ( δ̂
δ

)−1/γ
K1/γ − kξI(t)/β1.

(A-11)

The indirect value function in (A-10) can be rewritten when the above first-order conditions for

consumption and wealth are substituted in:

J δ̂(λ, I) = E
[ ∫ ∞

0
e−(β+δ)t

{ γ

1− γ

(
λe(β+δ−δ̂)tH(t)

)1−1/γ

+
γ

1− γ
(δK)1/γ δ̂1−1/γ

(
λe(β+δ−δ̂)tH(t)

)1−1/γ

+
(

1 +
δ̂k

β1

)(
λe(β+δ−δ̂)tH(t)ξI(t)

)}
dt
]
.

(A-12)

We introduce a new state variable to reformulate the indirect value function in (A-12). Specifically,

Γδ̂(t) ≡ λe(β+δ−δ̂)tH(t)(ξI(t))γ .

The indirect value function in (A-10) can be reformulated as the function of Γδ̂(t):

J δ̂(λ, I) = E
[ ∫ ∞

0
(ξI(t))1−γe−(β+δ)t

{ γ

1− γ

(
Γδ̂(t)1−1/γ + (δK)1/γ δ̂1−1/γΓδ̂(t)1−1/γ

)
+
(

1 +
δ̂k

β1

)
Γδ̂(t)

}
dt
]
.

By Girsanov’s theorem, the new probability measure can be defined by

P̃ (A) ≡
∫
A

exp
(
− 1

2
(1− γ)2||σI ||2(t, ω) + (1− γ)(σI)>Z(t, ω)

)
dP (ω) for all A ∈ G

and the new Brownian motion process Z̃ is given by

Z̃(t) = −(1− γ)σIdt+ Z(t).

The dynamics of the new state variable follow

dΓδ̂(t) = Γδ̂(t){−(β δ̂1 − β2)dt+ β3dZ̃(t)},
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where β δ̂1, β2, and β3 are the constants given in the theorem. As a result, the indirect value

function is given by

J δ̂(λ, I) = (ξI)1−γẼ
[ ∫ ∞

0
e−(β2+δ)t

{ γ

1− γ

(
1 + (δK)1/γ δ̂1−1/γ

)
Γδ̂(t)1−1/γ +

(
1 +

δ̂k

β1

)
Γδ̂(t)

}
dt
]

≡ (ξI)1−γϕδ̂(z),

where z = λ(ξI)γ . Following Karatzas et al. (1991), the original dynamic problem (8) or

equivalently, the static problem (A-6) essentially derives from the indirect value function in (A-

10) by (A-7), from which the proof is completed. Q.E.D.

We now determine δ̂ uniquely and explicitly, which completes the proof of the theorem.

Lemma D.5 The risk-neutral intensity δ̂ is determined uniquely by

δ̂ =
( w
ξI

+
k

β1

)−γ δK
z
, (A-13)

where z is the corresponding marginal value of w by their relation as follows:

G(z) =
(
w +

ξI

β1

)/
(ξI),

which represents the total wealth to income ratio to be optimally determined by solving the fol-

lowing non-linear differential equation:

−1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z)

+ β1G(z) + δK
(
G(z)− 1

β1
+

k

β1

)−γ
G′(z) = z−1/γ , 0 < z < z,

(A-14)

where z is a constant to be determined by the boundary conditions as follows:

G(z) = − L
ξI

+
1

β1
and G′(z) = 0.

Proof. The function ϕδ̂(z) in (A-8) should satisfy by Feynman-Kac’s formula the following

non-linear ordinary differential equation:

inf
δ̂

[1

2
||β3||2z2ϕ′′

δ̂
(z)− (β δ̂1 − β2)zϕ′

δ̂
(z)− (β2 + δ)ϕδ̂(z)

+
γ

1− γ

(
1 + (δK)1/γ δ̂1−1/γ

)
z1−1/γ +

(
1 +

δ̂k

β1

)
z
]

= 0, 0 < z < z,

(A-15)
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where

β δ̂1 = r − µI + (σI)>θ + δ̂ − δ,

β2 = β − µI(1− γ) +
1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>,

and z is to be determined according to the boundary conditions (or the value matching and

smooth pasting conditions) given by

ϕ′
δ̂
(z) =

L

ξI
, ϕ′′

δ̂
(z) = 0.

Note that the technical details behind the boundary conditions stated above are a result of the

fact that by (A-7),

w = −ξIϕ′
δ̂
(z)

so that financial wealth w goes down to its lower bound −L given in (4) as z approaches z and the

fact that the local minimum of ϕ′
δ̂
(z) is achieved at z given that ϕ′

δ̂
(z) is a continuous, decreasing,

and convex function of z. Applying the first-order condition for δ̂ leads to

δ̂ =
(
− ϕ′

δ̂
(z) +

k

β1

)−γ δK
z
. (A-16)

When the above first-order condition is substituted in (A-15), the differential equation is rewritten

as

1

2
||β3||2z2ϕ′′

δ̂
(z)− (β1 − δ − β2)zϕ′

δ̂
(z)− (β2 + δ)ϕδ̂(z)

+
γ

1− γ
z1−1/γ + z +

δK

1− γ

(
− ϕ′

δ̂
(z) +

k

β1

)1−γ
= 0, 0 < z < z.

(A-17)

From now on, we will carry out several transformations to simplify the differential equation

given in (A-17). We denote −ϕ′
δ̂
(z) by G̃(z). By differentiating the both sides of (A-17) with

respect to z, the differential equation (A-17) is restated with G̃(z) as follows:

−1

2
||β3||2z2G̃′′(z)− (||β3||2 + β2 + δ − β1)zG̃′(z)

+ β1G̃(z) + 1 + δK
(
G̃(z) +

k

β1

)−γ
G̃′(z) = z−1/γ , 0 < z < z,

(A-18)

with the boundary conditions

G̃(z) = − L
ξI

and G̃′(z) = 0.
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We also denote G̃(z) + 1/β1 by G(z). Then the differential equation (A-18) is rewritten as

−1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z)

+ β1G(z) + δK
(
G(z)− 1

β1
+

k

β1

)−γ
G′(z) = z−1/γ , 0 < z < z,

with the boundary conditions

G(z) = − L
ξI

+
1

β1
and G′(z) = 0.

Finally, δ̂ given in (A-16) is rewritten as a function of G(z), which completes the proof. Q.E.D.

Remark. If we solve the equation (A-14), the original value function (8) can be recovered by

the relation (A-7) given in Lemma D.4 in which the unique risk-neutral intensity δ̂ is determined

by Lemma D.5. The following lemma verifies that the inverse is also true, i.e., the original value

function (8) can be converted by the principal of dynamic programming into the solution of the

static problem (A-6) that is obtained by solving the equation (A-14).

Lemma D.6 The original value function (8) can be converted into the solution of the static

problem (A-6).

Proof. By the principal of dynamic programming, the Hamilton-Jacobi-Bellman (HJB) equation

associated with the original value function (8) is given by: for any w > −L ≥ −ξI/β1,

− (β + δ)V + {rw − c+ ξI}Vw + π>(µ− r1)Vw +
1

2
||σπ||2Vww

+ µIIVI +
1

2
||σI ||2I2VII + π>σ>σIIVwI +

c1−γ

1− γ
+ δK

(w + kξI/β1)1−γ

1− γ
= 0,

where ||·||2 = (·>)·, the subscripts of V represent its partial derivatives. The first-order conditions

for consumption c and investment π are given by

c = V −1/γ
w

and

π = −σ−1
(
θVw + σIIVwI

)/
Vww,
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respectively. Substituting the first-order conditions in the above HJB equation, we obtain the

following equation: for any w > −L ≥ −ξI/β1,

− (β + δ)V + (rw + ξI)Vw + µIIVI +
1

2
||σI ||2I2VII +

γ

1− γ
V 1−1/γ
w

− 1

2
||θVw + σIIVwI ||2Vww + δK

(w + kξI/β1)1−γ

1− γ
= 0.

Notice that V (w, I) is homogeneous of degree 1− γ and hence,

V (w, I) = (ξI)1−γv(z), z =
w

ξI
, (A-19)

where v(z) is to be determined. The following relations hold:

Vw = (ξI)−γv′(z), Vww = (ξI)−γ−1v′′(z),

VI = (1− γ)(ξI)−γv(z)− (ξI)−γzv′(z),

VII = −γ(1− γ)(ξI)−γ−1v(z) + 2γ(ξI)−γ−1zv′(z) + (ξI)−γ−1z2v′′(z),

VwI = −γ(ξI)−γ−1v′(z)− (ξI)−γ−1zv′′(z).

As a result, we now obtain the following one-dimensional HJB equation: for any z > −L/(ξI),

β1zv
′(z)− β2v(z)− γ

1− γ
v′(z)1−1/γ + δK

(z + k/β1)1−γ

1− γ
− 1

2
||β3||2

v′(z)2

v′′(z)
= 0, (A-20)

where

β1 = r − µI + (σI)>θ,

β2 = β − (1− γ)µI +
1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>.

We now utilize the convex-duality approach of Bensoussan et al. (2016). We first introduce the

dual variable λ(z) defined as the first derivative of v(z):

λ(z) ≡ v′(z), (A-21)

which serves as the agent’s marginal value function. We then introduce the convex-dual function

G(λ(z)) whose multiplication by income I is defined as total wealth that is the sum of financial

wealth w and the present value ξI/β1 of future income I, which is the certainty equivalent present

value of lifetime labor income:

ξIG(λ(z)) ≡ w +
ξI

β1

A-13



or equivalently,

G(λ(z)) = z +
1

β1
. (A-22)

The convex-dual function G(λ(z)) satisfies the following relations:

G′(λ(z))λ′(z) = 1, G′′(λ(z))λ′(z)2 +G′(λ(z))λ′′(z) = 0. (A-23)

For notational simplicity, we will write G(λ(z)) as G(λ) and λ(z) as λ if there is no any confusion.

After taking a differentiation on the both sides of the HJB equation (A-20) with respect to z,

we can obtain the following dual HJB equation with the convex-dual function G(λ) and the dual

variable λ: 0 < λ < λ,

−1

2
||β3||2λ2G′′(λ)− (||β3||2 + β2 + δ − β1)λG′(λ)

+ β1G(λ) + δK
(
G(λ)− 1

β1
+

k

β1

)−γ
G′(λ) = λ−1/γ ,

(A-24)

where λ is a constant to be determined by the value matching and smooth pasting conditions as

follows:

G(λ) = − L
ξI

+
1

β1
and G′(λ) = 0.

The convex-dual function G(λ) obtained from the original value function (8) is, therefore, exactly

the same as G(z) solving the equation (A-14) that recovers the solution of the static problem (A-

6). We therefore conclude that the original value function (8) can be converted into the solution

of the static problem (A-6).

Notice that the original value function (8) is also recovered from the convex-dual function

G(λ) by the primal HJB equation (A-20) as follows:

v(z) =
1

β2

[
β1zv

′(z)− γ

1− γ
v′(z)1−1/γ + δK

(z + k/β1)1−γ

1− γ
− 1

2
||β3||2

v′(z)2

v′′(z)

]
=

1

β2

[
β1λ
(
G(λ)− 1

β1

)
− γ

1− γ
λ1−1/γ + δK

(
G(λ)− 1/β1 + k/β1

)1−γ
1− γ

− 1

2
||β3||2λ2G′(λ)

]
,

where the second equality results from (A-21), (A-22), and (A-23), so that the original value

function V (w, I) is now obtained by (A-19).
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E Proof of Theorem 3.2

Proposition E.1 A general solution of the differential equation (A-14) is given by

G(z) =
1

Â+ δ/γ
z−1/γ +B∗δ z

−α∗δ

+
2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
,

(A-25)

where Â is given by

Â =
γ − 1

γ

(
β1 +

||β3||2

2γ

)
+
β2

γ
, (A-26)

B∗δ and z are the two constants to be determined by the boundary conditions:

G(z) = − L
ξI

+
1

β1
and G′(z) = 0, (A-27)

and αδ > 1 and −1 < α∗δ < 0 are the two roots to the following characteristic equation:

F (α; δ) ≡ −1

2
||β3||2α(α− 1) + (β2 + δ − β1)α+ β1 = 0. (A-28)

Proof. We conjecture a general solution of the equation (A-14) as

G(z) =
1

Â+ δ/γ
z−1/γ + η(z)z−αδ + η∗(z)z−α

∗
δ , (A-29)

subject to

η′(z)z−αδ + (η∗(z))′z−α
∗
δ = 0,

where αδ > 1 and −1 < α∗δ < 0 are the two roots to the following characteristic equation:

F (α; δ) ≡ −1

2
||β3||2α(α− 1) + (β2 + δ − β1)α+ β1 = 0.

Direct calculations of the first and second derivative of G result in

G′(z) = − 1

γ(Â+ δ/γ)
z−1/γ−1 − αδη(z)z−αδ−1 − α∗δη∗(z)z−α

∗
δ−1

and

G′′(z) =
(

1 +
1

γ

) 1

γ(Â+ δ/γ)
z−1/γ−2 − αδη′(z)z−αδ−1 + αδ(αδ + 1)η(z)z−αδ−2

− α∗δ(η∗(z))′z−α
∗
δ−1 + α∗δ(α

∗
δ + 1)η∗(z)z−α

∗
δ−2.
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Using the general solution (A-29) and the derivatives of G stated above, the first three terms of

left-hand side in (A-14) become

− 1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z) + β1G(z)

= z−1/γ +
||β3||2

2
(αδ − α∗δ)z1−αδη′(z)

= z−1/γ − ||β3||2

2
(αδ − α∗δ)z1−α∗δ (η∗(z))′.

As a result, the differential equation (A-14) simplifies to the following: for 0 < z < z,

||β3||2

2
(αδ − α∗δ)z1−αδη′(z) = −δK

(
G(z)− 1

β1
+

k

β1

)−γ
G′(z)

and
||β3||2

2
(αδ − α∗δ)z1−α∗δ (η∗(z))′ = δK

(
G(z)− 1

β1
+

k

β1

)−γ
G′(z).

Integrating the both sides of the above two relationships from 0 to z and from z to z allows η(z)

and η∗(z) to be expressed as an integral form:

η(z) = − 2δK

||β3||2(αδ − α∗δ)

∫ z

0
µαδ−1

(
G(µ)− 1

β1
+

k

β1

)−γ
G′(µ)dµ

and

η∗(z) = η∗(z)− 2δK

||β3||2(αδ − α∗δ)

∫ z

z
µα
∗
δ−1
(
G(µ)− 1

β1
+

k

β1

)−γ
G′(µ)dµ.

Therefore, the general solution (A-29) also can be expressed as an integral form:

G(z) =
1

Â+ δ/γ
z−1/γ + η∗(z)z−α

∗
δ − 2δK

||β3||2(αδ − α∗δ)

[
z−αδ

∫ z

0
µαδ−1

(
G(µ)− 1

β1
+

k

β1

)−γ
G′(µ)dµ

+ z−α
∗
δ

∫ z

z
µα
∗
δ−1
(
G(µ)− 1

β1
+

k

β1

)−γ
G′(µ)dµ

]
.

(A-30)

Note that (
G(µ)− 1

β1
+

k

β1

)−γ
G′(µ) =

d

dµ

{ 1

1− γ

(
G(µ)− 1

β1
+

k

β1

)1−γ}
.

Using the integration by parts, the general solution (A-30) can be restated as follows:

G(z) =
1

Â+ δ/γ
z−1/γ +

{
η∗(z) + zα

∗
δ−1 1

1− γ

(
G(z)− 1

β1
+

k

β1

)1−γ}
z−α

∗
δ

+
2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
.
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Defining a constant B∗δ as

B∗δ ≡ η∗(z) + zα
∗
δ−1 1

1− γ

(
G(z)− 1

β1
+

k

β1

)1−γ
.

Finally, we obtain the general solution in closed-form:

G(z) =
1

Â+ δ/γ
z−1/γ +B∗δ z

−α∗δ

+
2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
,

which completes the proof. Q.E.D.

With the first-order condition (A-13) for δ̂, the first-order conditions for consumption c(t) in

(A-11) can be rewritten as

c(t) = ξI(t)Γδ̂(t)−1/γ , (A-31)

where Γδ̂(t) is given by

Γδ̂(t) = λe(β+δ−δ̂)tH(t)(ξI(t))γ ,

and

δ̂ =
(
G(Γδ̂(t))− 1

β1
+

k

β1

)−γ δK

Γδ̂(t)
.

By the principle of dynamic programming, it is convenient to express the consumption as a

function of initial variable z:

c(t) = c(0) = ξIz−1/γ . (A-32)

From the relationship (A-7) between the value function and the indirect value function, applying

the first-order condition for λ results in

w = −Jλ(λ, I) = −ξIϕ′
δ̂
(z) = ξIG̃(z) = ξI

(
G(z)− 1

β1

)
, (A-33)

accordingly,

G(z) =
w

ξI
+

1

β1
.
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A little rearrangement of the general solution (A-25) leads to

z−1/γ = (Â+ δ/γ)
[
G(z)−B∗δ z−α

∗
δ

− 2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]

= (Â+ δ/γ)
[ w
ξI

+
1

β1
−B∗δ z−α

∗
δ

− 2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
.

Therefore, the first-order condition for consumption c(t) in (A-31) allows the following optimal

consumption strategy:

c(t) = (Â+ δ/γ)
(
w +

ξI

β1
− ξIB∗δ z−α

∗
δ − IP

)
, (A-34)

where IP represents the integral parts given by

IP = IP1 + IP2, (A-35)

IP1 =
2δK(αδ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ < 0,

IP2 =
2δK(α∗δ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−α

∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ > 0.

It remains to derive the optimal investment strategy. A little rearrangement of the relationship

in (A-33) gives
w

ξI
= G(z)− 1

β1
,

or equivalently,
W (t)

ξI(t)
= G(Γδ̂(t))− 1

β1
. (A-36)
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By applying Itô’s formula to the left hand side of the above relationship,

d
(W (t)

ξI(t)

)
= dW (t)

1

ξI(t)
+W (t)d

( 1

ξI(t)

)
+ dW (t)d

( 1

ξI(t)

)
=
[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)

}
dt+ π(t)>σ>dZ(t)

] 1

ξI(t)

+W (t)
[
− (ξI(t))−2dI(t) + (ξI(t))−3(dI(t))2

]
+
[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)

}
dt+ π(t)>σ>dZ(t)

]
×
[
− (ξI(t))−2dI(t) + (ξI(t))−3(dI(t))2

]
=
[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)

}
dt+ π(t)>σ>dZ(t)

] 1

ξI(t)

+W (t)
[
− (ξI(t))−1{µIdt+ (σI)>dZ(t)}+ (ξI(t))−1||σI ||2dt

]
+
[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)

}
dt+ π(t)>σ>dZ(t)

]
×
[
− (ξI(t))−1{µIdt+ (σI)>dZ(t)}+ (ξI(t))−1||σI ||2dt

]
=
[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)

}
dt+ π(t)>σ>dZ(t)

] 1

ξI(t)

+
W (t)

ξI(t)

[
− (µI − ||σI ||2)dt− (σI)>dZ(t)

]
− (ξI(t))−1π(t)>σ>σIdt

=
1

ξI(t)

[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)−W (t)(µI − ||σI ||2)− π(t)>σ>σI

}
dt

+ {π(t)>σ> −W (t)(σI)>}dZ(t)
]

=
1

ξI(t)

[{
{r − µI + ||σI ||2}W (t)− c(t) + ξI(t) + π(t)>{µ− r1− σ>σI}

}
dt

+ {π(t)>σ> −W (t)(σI)>}dZ(t)
]
.

By applying Itô’s formula to the right hand side of the relationship (A-36),

dG(Γδ̂(t)) = G′(Γδ̂(t))dΓδ̂(t) +
1

2
G′′(Γδ̂(t))(dΓδ̂(t))2

= G′(Γδ̂(t))Γδ̂(t){−(β δ̂1 − β2)dt+ β3dZ̃(t)}+
1

2
G′′(Γδ̂(t))(Γδ̂(t))2||β3||2dt

= G′(Γδ̂(t))Γδ̂(t){−(β δ̂1 − β2)dt+ β3{−(1− γ)σIdt+ dZ(t)}+
1

2
G′′(Γδ̂(t))(Γδ̂(t))2||β3||2dt

=
{
−G′(Γδ̂(t))Γδ̂(t){(β δ̂1 − β2) + (1− γ)β3σ

I}+
1

2
G′′(Γδ̂(t))(Γδ̂(t))2||β3||2

}
dt

+G′(Γδ̂(t))Γδ̂(t)β3dZ(t).

(A-37)

Equating each term of dZ(t) in d(W (t)/(ξI(t))) and dG(Γδ̂(t)) derives the following relationship
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that involves the optimal investment strategy π(t):

π(t)>σ> −W (t)(σI)>

ξI(t)
= G′(Γδ̂(t))Γδ̂(t)β3. (A-38)

By the principle of dynamic programming, it is convenient to express the investment as a function

of initial variables at time 0:
π>σ> − w(σI)>

ξI
= G′(z)zβ3, (A-39)

where π = π(t) = π(0). Using the general solution G(z) given in (A-25), a direct calculation of

G′(z) yields

G′(z) =− 1

γ(Â+ δ/γ)
z−1/γ−1 − α∗δB∗δ z−α

∗
δ−1 +

2δK

||β3||2(1− γ)z2

(
G(z)− 1

β1
+

k

β1

)1−γ

− 2δKαδ(αδ − 1)

||β3||2(αδ − α∗δ)(1− γ)
z−αδ−1

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

−
2δKα∗δ(α

∗
δ − 1)

||β3||2(αδ − α∗δ)(1− γ)
z−α

∗
δ−1

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ.

Multiplying G′(z) by ξIz gives

ξIG′(z)z =− 1

γ(Â+ δ/γ)
ξIz−1/γ − α∗δξIB∗δ z−α

∗
δ

+
2δKξI

||β3||2(1− γ)z

(
G(z)− 1

β1
+

k

β1

)1−γ

− αδ × IP1− α∗δ × IP2,

where IP1 and IP2 given in (A-35) are the first and second integral part of income-disaster-

induced precautionary savings. Note that ξIz−1/γ of the first term in the above relationship is

equivalent to the optimal consumption strategy from (A-32), as a result, ξIG′(z)z can be restated

with (A-34) as the following:

ξIG′(z)z = −1

γ

[
w +

ξI

β1
+ (γα∗δ − 1)ξIB∗δ z

−α∗δ

− 2γ

||β3||2(1− γ)z
ξIδK

(
G(z)− 1

β1
+

k

β1

)1−γ

+ (γαδ − 1)× IP1 + (γα∗δ − 1)× IP2
]
.
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Note that

− 2γ

||β3||2(1− γ)z
ξIδK

(
G(z)− 1

β1
+

k

β1

)1−γ

= − 2γ

||β3||2z
ξIδK

( w
ξI

+
k

β1

)1−γ

1− γ

= − 2γ

||β3||2z
(ξI)γδK

(
w +

kξI

β1

)1−γ

1− γ

= − 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ

1− γ
c(t)γ

= − 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ

1− γ

/
c(t)−γ .

Therefore, we derive the optimal investment strategy from (A-39):

π(t) = σ−1(β3)>ξIG′(z)z + σ−1σIw

= σ−1(γσI − θ)ξIG′(z)z + σ−1σIw

=
1

γ
σ−1θw

+
1

γ
σ−1(θ − γσI)

[ξI
β1

+ (γα∗δ − 1)ξIB∗δ z
−α∗δ

− 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ

1− γ

/
c(t)−γ

+ (γαδ − 1)× IP1 + (γα∗δ − 1)× IP2
]
.

Following Karatzas et al. (1991), the optimality would be verified if the wealth process W (t)
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was self financed by c(t) and π(t). The term of dt of dG(Γδ̂(t)) in (A-37) is rewritten as

−G′(Γδ̂(t))Γδ̂(t){(β δ̂1 − β2) + (1− γ)β3σ
I}+

1

2
G′′(Γδ̂(t))(Γδ̂(t))2||β3||2

=
1

2
||β3||2(Γδ̂(t))2G′′(Γδ̂(t)) + {β2 − β1 − δ̂ + δ − (1− γ)β3σ

I}Γδ̂(t)G′(Γδ̂(t))

=
1

2
||β3||2(Γδ̂(t))2G′′(Γδ̂(t)) + (β2 + δ − β1)Γδ̂(t)G′(Γδ̂(t))− (1− γ)β3σ

IΓδ̂(t)G′(Γδ̂(t))

−
(
G(Γδ̂(t))− 1

β1
+

k

β1

)−γ δK

Γδ̂(t)
Γδ̂(t)G′(Γδ̂(t))

=
1

2
||β3||2(Γδ̂(t))2G′′(Γδ̂(t)) + (β2 + δ − β1)Γδ̂(t)G′(Γδ̂(t))− δK

(
G(Γδ̂(t))− 1

β1
+

k

β1

)−γ
G′(Γδ̂(t))

− (1− γ)Γδ̂(t)G′(Γδ̂(t))β3σ
I

= −||β3||2Γδ̂(t)G′(Γδ̂(t)) + β1G(Γδ̂(t))− Γδ̂(t)−1/γ − (1− γ)Γδ̂(t)G′(Γδ̂(t))β3σ
I

= −π(t)>σ> −W (t)(σI)>

ξI(t)
(β3)> + β1

(W (t)

ξI(t)
+

1

β1

)
− c(t)

ξI(t)
− (1− γ)

π(t)>σ> −W (t)(σI)>

ξI(t)
σI

=
1

ξI(t)

[
{(σI)>(β3)> + β1}W (t)− c(t) + ξI(t)− π(t)>σ>(β3)> − (1− γ)π(t)>σ>σI + (1− γ)||σI ||2W (t)

]
=

1

ξI(t)

[
{(σI)>(γσI − θ) + r − µI + (σI)>θ}W (t)− c(t) + ξI(t)− π(t)>σ>(γσI − θ)

− (1− γ)π(t)>σ>σI + (1− γ)||σI ||2W (t)
]

=
1

ξI(t)

[
{r − µI + γ||σI ||2}W (t)− c(t) + ξI(t) + π(t)>{µ− r1− σ>σI}

]
.

where the second equality derives when δ̂ in (A-13) substituted in, the fourth equality derives from

the differential equation in (A-14), the fifth equality derives from ||β3||2 = β(β3)>, (A-31), (A-36),

and (A-38). This shows that each term of dt in d(W (t)/(ξI(t))) and dG(Γδ̂(t)) are exactly the

same, as a result, the wealth process W (t) is self financed by the optimal consumption strategy

c(t) and the optimal investment strategy π(t) with the risk-neutral intensity δ̂ in (A-13).

F Proof of Theorem 4.1

The optimal consumption strategies for the normal agent (n) and the income-disaster-exposed

agent (d) prior to income disaster derive from (A-11): t < τ ,

cn(t) =
(
λne

(β+δ−δ̂)tH(t)
)−1/γ

,

cd(t) =
(
λde

(β+δ−δ̂)tH(t)
)−1/γ

,

(A-40)
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where the constants λn and λd should satisfy

E
[ ∫ ∞

0
e−δ̂tH(t)

(
cn(t)− ξnIn(t) + δ̂Wn(t)

)
dt
]

= wn,

E
[ ∫ ∞

0
e−δ̂tH(t)

(
cd(t)− ξdI(t) + δ̂Wd(t)

)
dt
]

= wd,

where ξ = ξn + ξd, w = wn + wd, with the following optimal wealth processes for agent n and

agent d prior to income disaster: t < τ ,

Wn(t) =
(
λde

(β+δ−δ̂)tH(t)
)−1/γ( δ̂

δ

)−1/γ
K1/γ − kξnIn(t)

β1
,

Wd(t) =
(
λde

(β+δ−δ̂)tH(t)
)−1/γ( δ̂

δ

)−1/γ
K1/γ − kξdI(t)

β1
.

According to the clearing condition of consumption good given in Definition 4.1, cn(t)+cd(t) =

I(t), the equilibrium SDF H(t) prior to income disaster follows: t < τ ,

H(t) = {(λn)−1/γ + (λd)
−1/γ}γe−(β−(δ̂−δ))tI(t)−γ , (A-41)

which completes the proof. Q.E.D.

G Proof of Theorem 4.2

The proof is straightforward by direct calculation. Q.E.D.

H Proof of Theorem 4.3

The equilibrium stock return dynamics before income disaster occurs are given by:

dRn(t) =
dSemn (t) +D(t)dt

Semn (t)

=
{
β + γµI − 1

2
||σI ||2γ(γ − 1)

}
dt+ (σI)>dZ(t)

≡ µemn dt+ (σemn )>dZ(t)

and

dRd(t) =
dSemd (t) +D(t)dt

Semd (t)

=
{
β − (δ̂ − δ) + γµI − 1

2
||σI ||2γ(γ − 1)

}
dt+ (σI)>dZ(t)

≡ µemd dt+ (σemd )>dZ(t),
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where µemn , µemd and σemn , σemd are the equilibrium equity expected return and volatility in the

economy n and in the economy d, respectively.

From the SDFs given in Theorem 4.1, we obtain before income disaster occurs that

dHn(t) = Hn(t)
[
−
{
β + γµI − 1

2
γ(γ + 1)||σI ||2

}
dt− γ(σI)>dZ(t)

]
≡ Hn(t)[−rndt− θ>n dZ(t)]

and

dHd(t) = Hd(t)
[
−
{
β − (δ̂ − δ) + γµI − 1

2
γ(γ + 1)||σI ||2

}
dt− γ(σI)>dZ(t)

]
≡ Hn(t)[−rddt− θ>d dZ(t)],

where rn, θn and rd, θd are the equilibrium risk-free interest rate and Sharpe ratio in the economy

n and in the economy d, respectively.

We now obtain the equilibrium equity premium in the economy n and in the economy d as

follows:

µemn − rn = γ||σI ||2

and

µemd − rd = γ||σI ||2,

respectively, which complete the proof. Q.E.D.

I Proof of Theorem 4.4

The Euler equation for the income-disaster-exposed agent’s equilibrium consumption price is

given by (A-40) as

U ′(cd(t)) = λde
(β+δ−δ̂)tH(t),

where U is utility over consumption and assumed to be twice continuously differentiable, strictly

increasing and strictly concave. Assuming the CRRA utility preference, Itô’s formula allows us
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to obtain the following equilibrium consumption dynamics:

dcd(t) = −1

γ

(
λde

(β+δ−δ̂)tH(t)
)−1/γ−1

d
(
λde

(β+δ−δ̂)tH(t)
)

+
1

2

1

γ

(1

γ
+ 1
)(
λde

(β+δ−δ̂)tH(t)
)−1/γ−1{

d
(
λde

(β+δ−δ̂)tH(t)
)}2

= −1

γ

(
λde

(β+δ−δ̂)tH(t)
)−1/γ[

(β + δ − δ̂)dt− rddt− θ>dZ(t)
]

+
1

2

1

γ

(1

γ
+ 1
)(
λde

(β+δ−δ̂)tH(t)
)−1/γ

||θ||2dt,

where we have used the fact that

d
(
λde

(β+δ−δ̂)tH(t)
)

=λde
(β+δ−δ̃(rd))tH(t){β + δ − δ̃(rd)}dt

+ λde
(β+δ−δ̃(rd))tH(t){−rddt− θ>dZ(t)}.

Hence,

dcd(t)

cd(t)
= −1

γ

[
{β + δ − δ̂}dt− rddt− γ(σI)>dZ(t)

]
+

1

2

1

γ

(1

γ
+ 1
)
γ2||σI ||2dt

=
1

γ

(
rd − β +

1

2
γ(1 + γ)||σI ||2 + δ̂ − δ

)
dt+ (σI)>dZ(t),

where the first equality is a result of the substitution of equilibrium Sharpe ratio θ = γσI , which

completes the proof. Q.E.D.

J Proof of Theorem 4.5

Without loss of generality, we now consider income-disaster-adjusted risk-free rate rd + δ and

subjective discount factor β + δ, thus resulting in

β1 = rd + δ − µI + (σI)>θ

and

β2 = β + δ + (1− γ)µI +
1

2
γ(1− γ)||σI ||2.

The partial equilibrium optimal consumption strategy given in (A-34) reduces to the following

general equilibrium consumption strategy of the income-disaster-exposed agent by substituting

all the equilibrium quantities in (A-34):

cd(t) = (Ã(rd) + δ/γ)
(
wd +

ξdI

β1

)
, (A-42)
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where

Ã(rd) =
γ − 1

γ

(
rd + δ − µI + γ||σI ||2

)
+
β + δ

γ
+
γ − 1

γ
µI +

1

2
(1− γ)||σI ||2

= rd +
1

γ
(β − rd) + δ +

1

2
(γ − 1)||σI ||2

= rd +
1

γ

{
− γµI +

1

2
γ(1 + γ)||σI ||2 + (δ̂ − δ)

}
+ δ +

1

2
(γ − 1)||σI ||2

= rd + δ − µI + γ||σI ||2 +
δ̂ − δ
γ

,

the first equality is a result of the substitution of the equilibrium quantities in β1 and β3 of Â

given in (A-26), and third equality is a result of the substitution of the determined equilibrium

risk-free interest rate rd. Hence, the equilibrium marginal propensity to consume (MPC) out

of financial wealth wd is now obtained as in Theorem 4.5 by differentiating the both sides of

equilibrium optimal consumption (A-42) with respect to wd.

K Effects of Borrowing Constraints on Optimal Strate-

gies

The extent to which the agent is borrowing constrained with a range of values for L affects

the agent’s optimal consumption (Table 4) and investment (Table 5) strategies. Tightening of

borrowing by decreasing L makes agents reduce their consumption amount; this response is

especially significant for poor people, so their consumption smoothing is more difficult than for

wealthy people. The effects of income disaster even worsens the situation for poor people. Given

the significant downward jump in income in the aftermath of income disaster, the poor people who

are substantially borrowing constrained would have difficulty to secure extra savings to finance

their consumption needs. Hence, the consumption amount could fall further with the joint effects

caused by the borrowing tightening and the income shock. Those effects also reduce the risky

investment amount; this result is similar to the observation in the optimal consumption amount.
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δ = 0 δ = 0.07 δ = 0.08

w \ L 0% 5% 10% 20% 0% 5% 10% 20% 0% 5% 10% 20%

1 1.0922 1.2090 1.2966 1.4336 0.7261 0.7200 0.7232 0.7281 0.7077 0.7033 0.7060 0.7098

10 1.8159 1.8646 1.9104 1.9948 1.1919 1.1809 1.1808 1.1810 1.1691 1.1578 1.1575 1.1586

20 2.4041 2.4402 2.4750 2.5409 1.6679 1.6538 1.6538 1.6539 1.6406 1.6285 1.6285 1.6285

30 2.9396 2.9698 2.9991 3.0552 2.1348 2.1183 2.1185 2.1185 2.1040 2.0915 2.0918 2.0910

40 3.4507 3.4772 3.5031 3.5528 2.5966 2.5787 2.5789 2.5789 2.5636 2.5507 2.5510 2.5501

50 3.9476 3.9715 3.9949 4.0400 3.0552 3.0365 3.0368 3.0368 3.0210 3.0075 3.0078 3.0069

δ = 0.09 δ = 0.10

w \ L 0% 5% 10% 20% 0% 5% 10% 20%

1 0.6862 0.6887 0.6909 0.6945 0.6748 0.6815 0.6784 0.6814

10 1.1396 1.1397 1.1397 1.1398 1.1223 1.1094 1.1233 1.1237

20 1.6071 1.6071 1.6072 1.6071 1.5894 1.5913 1.5890 1.5888

30 2.0680 2.0681 2.0681 2.0681 2.0498 2.0618 2.0489 2.0486

40 2.5260 2.5260 2.5260 2.5260 2.5069 2.5208 2.5059 2.5057

50 2.9820 2.9821 2.9821 2.9821 2.9620 2.9738 2.9613 2.9611

Table 4: Optimal consumption amount for various borrowing tightening scenarios and intensity values

of the large, negative shock. Parameter values: r = 0.02 (risk-free rate), β = 0.04 (subjective discount rate),

µ = 0.06 (expected stock return), σ = 0.20 (stock volatility), γ = 2 (risk aversion), ε = 1 (income), and k = 0.2

(recovery rate).

L Technical Details behind Section 6

L.1 Repeated income disasters

Referring to the change of measure for a general Poisson process in Chapter 11.6.1 in Shreve

(2004), the SDFs in an incomplete market caused by repeated income disaster can be given in

the state i (i ∈ {G,B}) by

ξδ̂
i,φ̂i(t) = exp

{
ln
( δ̂i
δi

)
NG(t)− (δ̂i − δi)t

}
exp

{
ln
( φ̂i
φi

)
1{τ i=t} − (φ̂i − φi)t

}
H(t),

where δ̂i and φ̂i are the risk-neutral intensities to be determined.

We define the new probability measure in the state i as

P ∗(A) ≡
∫
A
eb
iZδ(t,ω)− 1

2
(bi)2tdP (ω) for all A ∈ G

and the Brownian motion process under the new measure as

Z∗(t) ≡ Z(t)− ρibit,

which is the standard Brownian motion process. The agent’s dynamic wealth constraint (3) can
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δ = 0 δ = 0.07 δ = 0.08

w \ L 0% 5% 10% 20% 0% 5% 10% 20% 0% 5% 10% 20%

1 4.0426 6.1272 7.6885 10.1335 5.2955 5.6019 5.8596 6.2650 5.3110 5.5845 5.8131 6.1575

10 14.2285 15.0976 15.9148 17.4194 12.3362 12.2797 12.8383 12.2981 12.2003 12.1282 12.1269 12.1598

20 21.6927 22.3378 22.9587 24.1342 17.7237 17.6876 17.6797 17.6806 17.5918 17.4760 17.4635 17.5022

30 28.2186 28.7577 29.2809 30.2818 23.0102 22.9245 22.9209 22.9207 22.8117 22.6988 22.6947 22.7050

40 34.3084 34.7818 35.2955 36.1304 28.2267 28.0941 28.0950 28.0951 27.9683 27.8593 27.8622 27.8523

50 40.1449 40.5720 40.9892 41.7945 33.3908 33.2257 33.2293 33.2298 33.0902 32.9808 32.9875 32.9675

δ = 0.09 δ = 0.10

w \ L 0% 5% 10% 20% 0% 5% 10% 20%

1 5.3298 5.5553 5.7509 6.0713 5.3526 5.7242 5.7158 5.9980

10 12.0225 12.0263 12.0312 12.0399 11.8807 11.6225 11.9189 11.9382

20 17.3480 17.3468 17.3471 17.3471 17.1623 16.6403 17.2001 17.2086

30 22.5196 22.5197 22.5197 22.5194 22.3573 22.2349 22.3573 22.3544

40 27.6439 27.6450 27.6452 27.6454 27.4934 27.6851 27.4720 27.4644

50 32.7435 32.7451 32.7453 32.7456 32.5915 32.9486 32.5630 32.5543

Table 5: Optimal investment amount for various borrowing tightening scenarios and intensity values

of the large, negative shock. Parameter values: r = 0.02 (risk-free rate), β = 0.04 (subjective discount rate),

µ = 0.06 (expected stock return), σ = 0.20 (stock volatility), γ = 2 (risk aversion), ε = 1 (income), and k = 0.2

(recovery rate).

be rewritten as

dW (t) = {rW (t)− c(t) + ξI(t)}dt+ π(t)>σ>{dZ∗(t) + (θ + ρibi)dt}. (A-43)

Similar to Lemma D.3, for the fixed δ̂i and φ̂i, the dynamic wealth constraint (A-43) can be

converted into the following static wealth constraint:

E∗
[ ∫ ∞

0
e−(δ̂i+φ̂i)tH(t)

(
c(t)− ξI(t) + (δ̂i + φ̂i)W (t)

)
dt
]
≤ w. (A-44)

The original dynamic problem (19) can then be converted into the following static problem:

V i(w, I) = sup
(c,W )

E∗
[ ∫ ∞

0
e−(β+δi+φi)t

(c(t)1−γ

1− γ
+ δiV i

(
W (t), kI(t)

)
+ φiV j

(
W (t), I(t)

))
dt
]
,

(A-45)

which is subject to (A-44).

Similar to Lemma D.4, the static optimization problem (A-45) can be reformulated as

V i(w, I) = inf
(λi,δ̂i,φ̂i)

{J δ̂i,φ̂i(λi, I) + λiw} = inf
λi
{ inf
δ̂i,φ̂i

J δ̂
i,φ̂i(λi, I) + λiw} ≡ inf

λi
{J i(λi, I) + λiw},

(A-46)
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where the indirect value function J δ̂
i,φ̂i(λi, I) is given by

J δ̂
i,φ̂i(λi, I)

= (ξI)1−γẼ
[ ∫ ∞

0
e−(β2+δi+φi)t

{ γ

1− γ
Γδ̂

i,φ̂i(t)1−1/γ + Γδ̂
i,φ̂i(t)

}
dt
]

+ (ξI)1−γẼ
[ ∫ ∞

0
e−(β2+δi+φi)t

{
δik1−γ

(
vi
(
y(t)/k

)
− v′i

(
y(t)/k

)y(t)

k

)
+ φi

(
vj
(
y(t)

)
− v′j

(
y(t)

)
y(t)

)}]
,

(A-47)

where Ẽ is the expectation under the new probability measure defined as

P̃ (A) ≡
∫
A

exp
(
− 1

2
(1− γ)2||σI ||2(t, ω) + (1− γ)(σI)>Z∗(t, ω)

)
dP ∗(ω) for all A ∈ G

with the new Brownian motion process Z̃ given by

Z̃(t) = −(1− γ)σIt+ ρibit+ Z∗(t),

Γδ̂
i,φ̂i(t) is a new state variable defined by

Γδ̂
i,φ̂i(t) ≡ λie(β+δi−δ̂i+φi−φ̂i)tH(t)

(
ξI(t)

)γ
,

its dynamics are given by

dΓδ̂
i,φ̂i(t) = Γδ̂

i,φ̂i(t){−(β δ̂
i,φ̂i

1 − β2)dt+ βi3dZ̃(t)},

with

β δ̂
i,φ̂i

1 = r − µI + (σI)>(θ + ρibi) + δ̂i − δi + φ̂i − φi,

βi3 = γ(σI)> − (θ + ρibi)>,

and vi
(
y(t)

)
has the following relation with the value function V i

(
W (t), I(t)

)
:

V i
(
W (t), I(t)

)
= (ξI(t))1−γvi

(
y(t)

)
, y(t) =

W (t)

ξI(t)
.

The relation (A-46) implies that

(
ξI(t)

)−γ
v′i
(
y(t)

)
= λie

(β+δi−δ̂i+φi−φ̂i)tH(t)

and therefore,

v′i(y(t)) = Γδ̂
i,φ̂i(t),
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thus demonstrating that the state variable Γδ̂
i,φ̂i(t) is a function of the wealth-to-income ratio y(t).

Hence, the indirect value function J δ̂
i,φ̂i(λi, I) given in (A-47) can be restated as the following:

J δ̂
i,φ̂i(λi, I) ≡ (ξI)1−γϕi

(
z(y)

)
= J i(λi, I)

with the uniquely determined the risk-neutral intensities δ̂i and φ̂i as

δ̂i = δi
1

λi(y)

∂V i(w, kI)

∂w

= δi
1

λi(y)
(kξI)−γv′i(y/k)

= δik−γ
v′i(y/k)

z(y)

= δik−γ
z(y/k)

z(y)

and

φ̂i = φi
v′j(y)

z(y)

= φi
zj(y)

z(y)

respectively, where

z(y) = λi(y)(ξI)γ , zj(y) = λj(y)(ξI)γ .

By Feynman-Kac’s formula, we obtain the following non-linear ordinary differential equation:

for any 0 < z(y) < z̄i,

1

2
||βi3||2z(y)2ϕ′′i

(
z(y)

)
− (βi1 − β2 − δi − φi)z(y)ϕ′i

(
z(y)

)
− (β2 + δi + φi)ϕi

(
z(y)

)
+

γ

1− γ
z(y)1−1/γ + z(y) + δik1−γvi(y/k) + φivj(y) = 0,

(A-48)

where

βi1 = r − µI + (σI)>(θ + ρibi)

and z̄i is to be determined according to the boundary conditions given by

ϕ′(z̄i) =
L

ξI
, ϕ′′(z̄i) = 0,

which results from the borrowing constraint (4). After differentiating the both sides of (A-48)

with respect to z(y), we obtain that for any 0 < z(y) < z̄i,

1

2
||βi3||2z(y)2ϕ′′′i

(
z(y)

)
+ (||βi3||2 + β2 + δi + φi − βi1)z(y)ϕ′′i

(
z(y)

)
− βi1ϕ′i

(
z(y)

)
− z(y)−1/γ + 1 + δik−γz(y/k)

y

∂z(y)
+ φizj(y)

y

∂z(y)
= 0.

(A-49)
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We know from the relation (A-46) that

ϕ′i
(
z(y)

)
= −y ϕ′′i

(
z(y)

)
= − y

∂z(y)

and denote −ϕ′i
(
z(y)

)
by G̃i

(
z(y)

)
. The equation (A-49) can then be rewritten as follows: for

any 0 < z(y) < z̄i,

−1

2
||βi3||2z(y)2G̃′′i

(
z(y)

)
− (||βi3||2 + β2 + δi + φi − βi1)z(y)G̃i

(
z(y)

)
+ βi1G̃i

(
z(y)

)
+ 1

+ δik−γz(y/k)G̃′i
(
z(y)

)
+ φizj(y)G̃′i

(
z(y)

)
= z(y)−1/γ

(A-50)

with the boundary conditions

G̃i(z̄i) = − L
ξI
, G̃′i(z̄i) = 0.

We also denote G̃i
(
z(y)

)
+ 1/βi1 by Gi

(
z(y)

)
. The equation (A-50) is then restated as follows:

for any 0 < z(y) < z̄i,

−1

2
||βi3||2z(y)2G′′i

(
z(y))− (||βi3||2 + β2 + δi + φi − βi1)z(y)G′i

(
z(y)

)
+ βi1Gi

(
z(y)

)
+ δik−γz

(Gi(z(y)
)
− 1/βi1

k

)
G′i
(
z(y)

)
+ φizj(y)G′i

(
z(y)

)
= z(y)−1/γ .

(A-51)

For notational simplicity, we write z(y) as z and zj(y) as zj unless there is any confusion.

The following proposition allows us to obtain a general solution of the equation (A-51):

Proposition L.1 A general solution of the equation (A-51) is given by

Gi(z) =
1

Âi + (δi + φi)/γ
z−1/γ +B∗i z

−α∗i +
2φizj

||βi3||2(αi − α∗i )

[
(αi − 1)z−αi

∫ z

0
µαi−2Gi(µ)dµ

+ (α∗i − 1)z−α
∗
i

∫ z̄i

z
µα
∗
i−2Gi(µ)dµ

]
+

2δik1−γ

||βi3||2(αi − α∗i )

[
(αi − 1)z−αi

∫ z

0
µαi−2vi

(Gi(µ)− 1/βi1
k

)
dµ

+ (α∗i − 1)z−α
∗
i

∫ z̄i

z
µα
∗
i−2vi

(Gi(µ)− 1/βi1
k

)
dµ
]
,

where B∗i and z̄i are the two constants to be determined by the boundary conditions:

Gi(z̄i) = − L
ξI

+
1

βi1
and G′i(z̄i) = 0, (A-52)

and αi > 1 and −1 < α∗i < 0 are the two roots to the following characteristic equation:

Fi(α;φi, δi) ≡ −1

2
||βi3||2α(α− 1) + (β2 + φi + δi − βi1)α+ βi1 = 0.
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Proof. We conjecture a general solution of the equation (A-51) as

Gi(z) =
1

Âi + (δi + φi)/γ
z−1/γ + ηi(z)z

−αi + η∗i (z)z
−α∗i , (A-53)

subject to

η′i(z)z
−αi + (η∗i (z))

′z−α
∗
i = 0,

where αi > 1 and −1 < α∗i < 0 are the two roots to the following characteristic equation:

Fi(α;φi, δi) ≡ −1

2
||βi3||2α(α− 1) + (β2 + φi + δi − βi1)α+ βi1 = 0,

Âi =
γ − 1

γ

(
βi1 +

||βi3||2

2γ

)
+
β2

γ
.

With direct calculations of the first and second derivative Gi, the first three terms of left-hand

side in (A-51) become

− 1

2
||βi3||2z2G′′i (z)− (||βi3||2 + β2 − βi1 + δi + φi)zG′i(z) + βi1Gi(z)

= z−1/γ +
||βi3||2

2
(αi − α∗i )z1−αiη′i(z)

= z−1/γ − ||β
i
3||2

2
(αi − α∗i )z1−α∗i (η∗i (z))

′.

Hence, the equation (A-51) reduces to the following: for 0 < z < z̄i,

||βi3||2

2
(αi − α∗i )z1−αiη′i(z) = −φizjG′i(z)− δik−γz

(Gi(z)− 1/βi1
k

)
G′i(z) (A-54)

and
||βi3||2

2
(αi − α∗i )z1−α∗i (η∗i (z))

′ = φizjG
′
i(z) + δik−γz

(Gi(z)− 1/βi1
k

)
G′i(z), (A-55)

where z̄i is a constant to be determined according to the boundary conditions as follows:

Gi(z̄i) = − L
ξI

+
1

βi1
and G′i(z̄i) = 0.

Integrating the both sides of (A-54) and (A-55) from 0 to z and from z to z̄i, we get

ηi(z) = − 2φizj
||βi3||2(αi − α∗i )

∫ z

0
µαi−1G′i(µ)dµ− 2δik−γ

||βi3||2(αi − α∗i )

∫ z

0
µαi−1µ

(Gi(µ)− 1/βi1
k

)
G′i(µ)dµ

and

η∗i (z) = η∗i (z̄i)−
2φizj

||βi3||2(αi − α∗i )

∫ z̄i

z
µα
∗
i−1G′i(µ)dµ

− 2δik−γ

||βi3||2(αi − α∗i )

∫ z̄i

z
µα
∗
i−1µ

(Gi(µ)− 1/βi1
k

)
G′i(µ)dµ.
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Thus, the general solution (A-53) can be expressed as an integral form:

Gi(z) =
1

Âi + (δi + φi)/γ
z−1/γ + η∗i (z̄i)z

−α∗i

− 2φizj
||βi3||2(αi − α∗i )

[
z−αi

∫ z

0
µαi−1G′i(µ)dµ+ z−α

∗
i

∫ z̄i

z
µα
∗
i−1G′i(µ)dµ

]
− 2δik−γ

||βi3||2(αi − α∗i )

[
z−αi

∫ z

0
µαi−1µ

(Gi(µ)− 1/βi1
k

)
G′i(µ)dµ

+ z−α
∗
i

∫ z̄i

z
µα
∗
i−1µ

(Gi(µ)− 1/βi1
k

)
G′i(µ)dµ

]
.

(A-56)

Notice that

µ
(Gi(µ)− 1/βi1

k

)
G′i(µ) =

d

dµ

{
vi

(Gi(µ)− 1/βi1
k

)}
k.

Thanks to the integration by parts, the general solution (A-53) can be rewritten as

Gi(z) =
1

Âi + (δi + φi)/γ
z−1/γ +B∗i z

−α∗i

+
2φizj

||βi3||2(αi − α∗i )

[
(αi − 1)z−αi

∫ z

0
µαi−2Gi(µ)dµ+ (α∗i − 1)z−α

∗
i

∫ z̄i

z
µα
∗
i−2Gi(µ)dµ

]
+

2δik1−γ

||βi3||2(αi − α∗i )

[
(αi − 1)z−αi

∫ z

0
µαi−2vi

(Gi(µ)− 1/βi1
k

)
dµ

+ (α∗i − 1)z−α
∗
i

∫ z̄i

z
µα
∗
i−2vi

(Gi(µ)− 1/βi1
k

)
dµ
]
,

where

B∗i ≡ η∗i (z̄i)−
2φiz̄j

||βi3||2(αi − α∗i )
Gi(z̄i)z̄

α∗i−1
i − 2δik1−γ

||βi3||2(αi − α∗i )
vi

(Gi(z̄i)− 1/βi1
k

)
z̄
α∗i−1
i ,

which completes the proof. Q.E.D.

By the first-order condition for optimal consumption c used in the derivation of the indirect

value function (A-47),

c = ξIz−1/γ ,

as a result, the general solution given in Proposition L.1 then yields an analytic characterization

of optimal consumption c as follows:

c(t) =
(
Âi +

δi + φi

γ

)(
w +

ξI

βi1
− ξIB∗i z−α

∗
i − IPi

)
,

where IPi represents the integral parts given by

IPi = IP1i + IP2i, (A-57)
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IP1i =
2φizj(αi − 1)ξIz−αi

||βi3||2(αi − α∗i )

∫ z

0
µαi−2Gi(µ)dµ

+
2δik1−γ(αi − 1)ξIz−αi

||βi3||2(αi − α∗i )

∫ z

0
µαi−2vi

(Gi(µ)− 1/βi1
k

)
G′i(µ)dµ,

IP2i =
2φizj(α

∗
i − 1)ξIz−α

∗
i

||βi3||2(αi − α∗i )

∫ z̄i

z
µα
∗
i−2Gi(µ)dµ

+
2δik1−γ(α∗i − 1)ξIz−α

∗
i

||βi3||2(αi − α∗i )

∫ z̄i

z
µα
∗
i−2vi

(Gi(µ)− 1/βi1
k

)
G′i(µ)dµ.

The optimal investment π is given by

π = −σ−1
{

(θ + ρibi)(ξI)−γv′i(z) + σI
(
− γ(ξI)−γv′i(z)− (ξI)−γzv′′i (z)

)}/
{(ξI)−γ−1v′′i (z)}

= σ−1{γσI − (θ + ρibi)}ξI v
′
i(z)

v′′i (z)
+ σ−1σIξIz

= σ−1{γσI − (θ + ρibi)}ξIzG′i(z) + σ−1σIw,

respectively. A direct calculation of G′i(z) is given by

G′i(z) =− 1

γ{Âi + (δi + φi)/γ}
z−1/γ−1 − α∗iB∗i z−α

∗
i−1 +

2φizj
||βi3||2z2

Gi(z) +
2δik1−γ

||βi3||2z2
vi

(Gi(z)− 1/βi1
k

)
− 2φizj
||βi3||2(αi − α∗i )

[
αi(αi − 1)z−αi

∫ z

0
µαi−2Gi(µ)dµ+ α∗i (α

∗
i − 1)z−α

∗
i

∫ z̄i

z
µα
∗
i−2Gi(µ)dµ

]
− 2δik1−γ

||βi3||2(αi − α∗i )

[
αi(αi − 1)z−αi

∫ z

0
µαi−2vi

(Gi(µ)− 1/βi1
k

)
dµ

+ α∗i (α
∗
i − 1)z−α

∗
i

∫ z̄i

z
µα
∗
i−2vi

(Gi(µ)− 1/βi1
k

)
dµ
]
,

as a result,

ξIzG′i(z) =− 1

γ{Âi + (δi + φi)/γ}
ξIz−1/γ − α∗i ξIB∗i z−α

∗
i

+
2φizj
||βi3||2z

(
w +

ξI

βi1

)
+

2δik1−γ

||βi3||2z
ξIvi

(Gi(z)− 1/βi1
k

)
− αi × IP1i − α∗i × IP2i.

Hence, we obtain an analytic characterization of optimal investment π as follows:

π(t) =
1

γ
σ−1(θ + ρibi)w

+
1

γ
σ−1(θ + ρibi − γσI)

[ξI
βi1

+ (γα∗i − 1)ξIB∗i z
−α∗i

− 2γφizj
||βi3||2z

(
w +

ξI

βi1

)
− 2γδik1−γ

||βi3||2z
ξIvi

(Gi(z)− 1/βi1
k

)
+ (γαi − 1)× IP1i + (γα∗i − 1)× IP2i

]
.
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The proofs of the theorems for the general equilibrium quantities and the equilibrium MPC

are straightforward by following the proofs of Theorem 4.3 and Theorem 4.5.

L.2 Uninsurable diffusive and continuous income shocks

Following Karatzas et al. (1991), the SDFs in an incomplete market caused by uninsurable

diffusive and continuous income shocks can be given by

dHζ(t) = −Hζ(t){rdt+ θ>dZ(t) + ζdZI(t)}, Hζ(0) = 1,

where ζ is the market price of uninsurable income shocks to be determined.

Similar to Lemma D.3, for a fixed ζ, the dynamic wealth constraint (3) can be converted into

the following static wealth constraint:

E
[ ∫ ∞

0
Hζ(t)

(
c(t)− ξI(t)

)
dt
]
≤ w. (A-58)

We then need to solve the following static optimization problem:

V (w, I) ≡ sup
c
E
[ ∫ ∞

0
e−βt

c(t)1−γ

1− γ
dt
]
, (A-59)

subject to the static wealth constraint (A-58).

Similar to Lemma D.4, the static optimization problem (A-59) can be reformulated as

V (w, I) = inf
λ,ζ
{Jζ(λ, I) + λw} = inf

λ
{inf
ζ
Jζ(λ, I) + λw} ≡ inf

λ
{J(λ, I) + λw},

where the indirect value function Jζ(λ, I) is given by

Jζ(λ, I) = (ξI)1−γẼ
[ ∫ ∞

0
e−β2t

{ γ

1− γ
Γζ(t)1−1/γ + Γζ(t)

}
dt
]

= (ξI)1−γϕζ(z)

with z = λ(ξI)γ , where Ẽ is the expectation under the new probability measure defined as

P̃ (A) ≡
∫
A

exp
(
−1

2
(1−γ)2(σI)2(t, ω)+(1−γ)σIρ>Z(t, ω)+(1−γ)σI

√
1− ||ρ||2ZI(t, ω)

)
dP (ω) for allA ∈ F

with the new Brownian motion processes Z̃ and Z̃I given by

Z̃(t) = −(1− γ)σIρ>t+ Z(t) and Z̃I(t) = −(1− γ)σI
√

1− ||ρ||2t+ ZI(t),
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Γζ(t) ≡ λeβtHζ(t)(ξI(t))γ ,

and its dynamics are given by

dΓζ(t) = Γζ(t)
{
− (β̃ζ1 − β2)dt+ β̃3dZ̃(t) + (γσI

√
1− ||ρ||2 − ζ)dZ̃I(t)

}
with

β̃ζ1 = β̃1 + ζσI
√

1− ||ρ||2, β̃1 = r − µI + σIρ>θ,

β̃3 = γσIρ> − θ>,

and F = {Ft; t ≥ 0} is the standard P -augmentation of σ
(
Z(s); 0 ≤ s ≤ t

)
and σ

(
ZI(s); 0 ≤ s ≤

t
)

generated by Brownian motion processes Z(t) and ZI(t), respectively.

By Feynman-Kac’s formula, we obtain the following non-linear ordinary differential equation:

for any 0 < z < z̄,

inf
ζ

[1

2

{
||β̃3||2 + (γσI

√
1− ||ρ||2 − ζ)2

}
z2ϕ′′ζ (z)− (β̃ζ1 − β2)zϕ′ζ(z)− β2ϕζ(z) +

γ

1− γ
z1−1/γ + z

]
= 0,

(A-60)

where z̄ is to be determined according to the boundary conditions given by

ϕ′ζ(z̄) =
L

ξI
, ϕ′′ζ (z̄) = 0.

Applying the first-order condition for ζ results in

ζ = γσI
√

1− ||ρ||2 + σI
√

1− ||ρ||2
ϕ′ζ(z)

zϕ′′ζ (z)
. (A-61)

With substitution of the above first-order condition in the equation (A-60), the equation is re-

stated as

1

2
||β̃3||2z2ϕ′′ζ (z)− (β̃1 − β2)zϕ′ζ(z)− β2ϕζ(z) +

γ

1− γ
z1−1/γ + z − 1

2
(σI)2

ϕ′ζ(z)
2

ϕ′′ζ (z)
= 0, 0 < z < z̄.

(A-62)

Denote −ϕ′ζ(z) by G̃(z). By differentiating the both sides of (A-62) with respect to z, the equation

(A-62) can then be rewritten as

−1

2
||β̃3||2z2G̃′′(z)− (||β̃3||2 + β2 − β̃1)zG̃′(z) + β̃1G̃(z) + 1− 1

2
(σI)2 d

dz

(G̃(z)2

G̃′(z)

)
= 0, 0 < z < z̄,

(A-63)

with the boundary conditions

G̃(z̄) = − L
ξI
, G̃′(z̄) = 0.
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Denote also G̃(z) + 1/β̃1 by G(z). The equation (A-63) is therefore restated as

−1

2
||β̃3||2z2G′′(z)−(||β̃3||2+β2−β̃1)zG′(z)+β̃1G(z)−1

2
(σI)2 d

dz

((G(z)− 1/β̃1)2

G(z)

)
= 0, 0 < z < z̄,

(A-64)

with the boundary conditions

G(z̄) = − L
ξI

+
1

β̃1

, G′(z̄) = 0. (A-65)

The market price of uninsurable income shocks ζ is now obtained from (A-61) by G(z) as

ζ = γσI
√

1− ||ρ||2 + σI
√

1− ||ρ||2G(z)− 1/β̃1

zG′(z)
.

Similar to Proposition E.1 and Proposition L.1, a general solution of the equation (A-63) is

given by

G(z) =
1

Ã
z−1/γ + B̃∗z−α̃

∗

+
(σI)2(1− ||ρ||2)

||β̃3||2(α̃− α̃∗)

[
(α̃− 1)z−α̃

∫ z

0
µα̃−2

((G(µ)− 1/β̃1

)2
G′(µ)

)
dµ

+ (α̃∗ − 1)z−α̃
∗
∫ z̄

z
µα̃
∗−2
((G(µ)− 1/β̃1

)2
G′(µ)

)
dµ
]
,

where B̃∗ and z̄ are the two constants to be determined by the boundary conditions given in

(A-65), and α̃ > 1 and −1 < α̃∗ < 0 are the two roots of the following characteristic equation:

F̃ (α) ≡ −1

2
||β̃3||2α(α− 1) + (β2 − β̃1)α+ β̃1 = 0.
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