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The Effect of DLT Settlement Latency on Market Liquidity

Abstract

This paper investigates the causal relationship between settlement latency introduced

specially by permissionless Distributed Ledger Technology (DLT) and market quality in

the cryptocurrency domain. Utilizing the cryptocurrency market as a unique laboratory,

we identify blockchain mining power as an instrumental variable for DLT settlement la-

tency. Our analysis reveals that the settlement latency significantly lowers liquidity and

increases transaction costs. In addition, through the Huang and Stoll (1997) spread

decomposition, we document that such latency reduces the adverse selection costs

and increases the inventory management costs faced by liquidity suppliers. Moreover,

these effects are more pronounced in smaller trading venues and for the native cryp-

tocurrency of the settlement blockchain. More broadly, this paper contributes novel

evidence on the importance of settlement, and highlights the balance between decen-

tralized, near-instantaneous settlement cycles offered by DLT and the potential adverse

impacts on market quality.
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1 Introduction

In the financial markets, settlement processes are fundamental to ensuring the secure and

efficient exchange of assets. These processes encompass the physical transfer of securities

from sellers to buyers, accompanied by the corresponding transfer of funds, marking the

finalization of a transaction.1 Traditionally overseen by trusted and regulated entities, such

as central securities depositories (CSDs) and Central Counterparties (CCPs), the settlement

process has generally involved minimal uncertainty and typically spans one to two business

days following the trade execution.

However, despite recent endeavors to streamline settlement cycles, emerging technolo-

gies, notably Distributed Ledger Technologies (DLT) such as blockchain, present an alter-

native approach. DLT aims to facilitate near-instantaneous transactions and reduce de-

pendence on intermediaries. Nevertheless, the integration of DLT in settlement processes

introduces complexities.2 The blockchain’s inherent features, such as the overall mining

capacity of the network, influence block validation speed, thereby affecting settlement la-

tency and introducing uncertainty into the process. Notably, insufficient mining power in

the network could empower malicious participants to fork the chain, potentially leading to

settlement failures (Chiu and Koeppl (2019)). Consequently, DLT settlement, specially the

permissionless blockchains3, introduces non-negligible uncertainty into the traditionally

secure settlement process, and such market frictions can affect the market quality offered

by the trading venues.

1For instance, the Federal Reserve Bank of New York defines settlement as “the final step in the transfer of
ownership involving the physical exchange of securities or payment”, and the Bank for International Settlements
(BIS)’s definition states that settlement is “the completion of a transaction, wherein the seller transfers securities
or financial instruments to the buyer and the buyer transfers money to the seller.”

2For example, see the discussion in Benos et al. (2017). For a comprehensive overview of crypto-trading
market infrastructure, see Chen et al. (2023).

3A permissionless blockchain network is a system consisting of physically distributed computers, each
running a copy of a shared ledger and adhering to the same software rules that allow all participants to "read,
submit, and validate transactions" (Beck et al. (2018)). In contrast, permissioned blockchains generally do
not involve stochastic validation times, as validators are pre-selected by a central authority or a consortium
of entities. These validators often follow a predefined schedule or protocol for validating transactions, which
can result in more predictable and consistent validation times.
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In this paper, we identify the causal relationship between settlement processes and mar-

ket quality, utilizing the cryptocurrency market as a unique laboratory and delving into the

uncertainties linked to DLT settlement. Our investigation lies in analyzing how the confir-

mation time of the Bitcoin blockchain influences liquidity and trading costs. The primary

finding indicates that the uncertainty stemming from DLT settlement latency deters in-

vestor participation, leading to a decline in liquidity. Furthermore, for those participants

remaining active in cryptocurrency trading, there is a significant increase in transaction

costs and larger price impacts.

Identification in such empirical investigations is generally confounded by various en-

dogeneity issues. For example, factors, such as mining rewards and the price of Bitcoin,

alongside with transaction fees, can influence the participation of miners and traders.

Consequently, both market quality and block validation time are impacted (Easley et al.

(2019)), and omitted variable issues arise. Furthermore, the sequencing of trading pre-

ceding settlement introduces reverse causality concerns, where the former may affect the

latter process. To overcome these identification challenges, we utilize a plausible instru-

mental variable approach relying on an inherent and exogenous feature of the Bitcoin

blockchain, specifically mining power. The blockchain operates on a consensus protocol

defining how validators agree on the ledger’s current state. In the context of the Bit-

coin blockchain’s Proof-of-Work (PoW) consensus protocol outlined by Nakamoto (2008),

validators engage in a computationally intensive competition, continuously attempting to

solve numerical puzzles by guessing hash function solutions. The aggregate computing or

mining power of the blockchain plays a pivotal role in determining the time required to

validate a new block—higher mining power enables faster computations, thereby shorten-

ing validation time. In other words, blockchain mining power plays an important role in

DLT settlement latency (inclusion restriction). Importantly, a priori, mining power itself is

unlikely to have a direct impact on cryptocurrency market quality (exclusion restriction).

With these restrictions in place, we employ an instrumental variable (IV) estimation, lever-
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aging the mining power-induced variation in DLT settlement latency. To the best of our

knowledge, this is the first paper to empirically identify and test the causal effects of set-

tlement latency on market quality.

For our empirical analysis, we employ a 2-Stage Least Squares (2SLS) approach using

data spanning January to June 2021. In the first stage regression, the blockchain daily me-

dian confirmation time serves as the dependent variable, while the blockchain’s aggregate

hash rate acts as the independent variable. Subsequently, in the second stage, we conduct

panel regressions using a sample of three cryptocurrencies (Bitcoin, Ether, and Litecoin)

traded on three venues (Coinbase, FTX, and Kraken), and we include the fitted value of

median confirmation time from the first stage as an independent variable. Our depen-

dent variables encompass various measures of liquidity and trading costs, derived from

intraday trading and order book records procured from the crypto data vendor Kaiko. To

enhance the robustness of our analysis, we include controls for cryptocurrency return,

volatility, and log trading volume. To control for the unobserved and heterogeneous char-

acteristics among the cryptocurrencies and trading venues, we implement various fixed

effect (FE) estimations—(1) pooled OLS, (2) cryptocurrency FEs and venue FEs, and (3)

cryptocurrency-venue FEs. Further regarding our data, it is worth noting that our measure

of settlement latency is the daily median confirmation time, and its standard deviation

underestimates the actual block-by-block variation in confirmation time. While our sample

standard deviation stands at approximately three minutes, Zhang et al. (2021) estimate

the block-by-block measure to exceed eight minutes. Consequently, our estimation results

are conservative, providing a cautious interpretation of the magnitude of the impacts of

DLT settlement latency.

Our analysis first focuses on the impact of DLT settlement latency on cryptocurrency

market liquidity. The hypothesis posits that prolonged confirmation times would decrease

liquidity, as heightened uncertainty in settlement may dissuade traders from active par-

ticipation. Utilizing the Kyle and Obizhaeva (2016) illiquidity measure as the dependent
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variable, a reliable liquidity measure in cryptocurrency markets according to Brauneis et al.

(2021), our IV estimation reveals positive and statistically significant coefficients across all

fixed-effect estimations. This result substantiates our hypothesis, showing a reduction in

liquidity levels due to DLT settlement latency. Specifically, our findings highlight that a

one-minute increase in settlement latency corresponds to a 0.009 basis point increase in

the Kyle and Obizhaeva (2016) measure. This effect translates to a 2.62% increase relative

to the average value, indicating a 7.82% decrease in liquidity for a one-standard deviation

increase in settlement time compared to the sample average.

To offer a more comprehensive understanding of the effect of DLT settlement latency,

we extend our analysis to additional liquidity dimensions, particularly transaction costs,

measure by percentage effective spreads. Our results reveal positive and statistically sig-

nificant coefficients on confirmation time, signifying a significant impact of DLT settlement

latency on transaction costs. We show that a one-minute increase in DLT settlement latency

results in an approximately 0.22 basis points upswing in the percentage effective spread.

In relation to the average effective spread of 17.48 basis points, this number translates to

a 1.26% increase. Alternatively, a one-standard deviation rise in settlement time leads to

a 3.76% higher transaction costs.

Considering that a portion of transaction costs is associated with the price impact faced

by traders executing large orders, the evidence of DLT settlement latency’s adverse impact

on liquidity and effective spread implies larger price impacts in cryptocurrency trading

as settlement latency lengthens. This expectation is corroborated by the IV estimation

results, where Kyle (1985)’s Lambda serves as the dependent variable. Our estimation

results indicate that a one-minute increase in settlement time increases Kyle’s Lambda by

about 0.015 basis points. In comparison to the average value of about 1 basis points, this

signifies a 1.5% increase, or alternatively, a one-standard deviation rise in settlement time

corresponds to a 4.49% surge in price impact relative to the sample average.

Our findings thus far indicate that the uncertainty associated with DLT settlement la-
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tency adversely affects liquidity and elevates transaction costs in cryptocurrency trading.

To gain deeper insights into how liquidity supply is impacted, we extend our analysis to

the percentage quoted bid-ask spread. The estimated coefficients, characterized by neg-

ative values with varying significance interpretation under different fixed effect models.

The pooled OLS estimate is significant at the 95% confidence level, crypto FE and venue

FE estimation is not statically significant, and the crypto-venue FE estimation is marginally

significant at the 90% confidence level. These estimates reveal that DLT settlement latency

either reduces the quoted bid-ask spread or has no significant impact. These results on bid-

ask spread seemingly disagrees with our earlier findings of reduced liquidity and increased

transaction costs.

To further scrutinize the impact of settlement latency on liquidity supply and reconcile

our findings, we follow the approach of Huang and Stoll (1997) and decompose the bid-

ask spread into three components: adverse selection cost, inventory cost, and fixed costs.

Focusing on adverse selection cost, we hypothesize that DLT settlement latency would hin-

der informed traders’ participation, as the latency creates uncertainty in their execution

of trading strategies. Indeed, we find that a one-minute increase in DLT settlement la-

tency significantly reduces the weight of adverse selection cost by 1.2 percentage points,

indicating that liquidity suppliers face less informed trading and are willing to post nar-

rower bid-ask spreads with increased settlement latency. This aligns with the argument

that DLT settlement uncertainty deters market participants, particularly informed traders,

as also predicted by Hautsch et al. (2024)’s model. Turning to the second component,

we expect an increase in inventory cost due to the deterioration in liquidity associated

with longer DLT settlement latency, as liquidity suppliers face higher cost when off-loading

their position. Our predictions are confirmed, with a one-minute increase in settlement

latency elevating the weight of inventory cost by 1.6 percentage points. Finally, the fixed

component of the bid-ask spread shows no significant effect of DLT settlement latency. In

agreement with our previous findings, the different impacts of DLT settlement latency on
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the costs face by liquidity supplier explain it’s opposite impact the bid-ask spread and other

liquidity measures.

We supplement our main finding by conduction subsample analysis, comparing the dif-

ferent trading venues and cryptocurrencies and exploring their cross-sectional differences.

More specifically, we repeat our IV estimation for each trading venue and for each cryp-

tocurrency to see whether the effect of DLT settlement persists. The analysis reveals that

DLT settlement latency significantly impacts liquidity and trading costs across different

cryptocurrency trading venues and cryptocurrencies. Moreover, comparing the three trad-

ing venues, the adverse effects are more pronounced in the smaller platforms (FTX and

Kraken) than in the larger Coinbase. Similarly, when comparing cryptocurrencies, the im-

pact is most significant for Bitcoin, the native coin of the settlement blockchain, followed

by Litecoin, which shares Bitcoin’s codebase, while Ether shows the smallest impact. These

findings underscore the nuanced nature of DLT settlement latency’s impact, with variations

based on the size of the trading venue as well as the link between the cryptocurrency and

the settlement blockchain.

Lastly, we conduct IV validation and robustness tests to substantial our results. First,

we employ the augmented Durbin–Wu–Hausman test, as suggested by Davidson et al.

(1993), to confirm the endogeneity of DLT settlement latency. This test involves includ-

ing the residual of the first-stage regression, along with the endogenous and not fitted

variable in the second-stage regression. A significant coefficient on the first-stage residual

indicates that the dependent variable is correlated with unobserved variables influencing

settlement latency, supporting the need for an instrument to address potential endogene-

ity concerns. The reported p-values of the tests across all tables are mostly statistically

significant, providing evidence of endogeneity issues without identification strategies and

support for our instrumental variable. Second, we iterate the fitted DLT settlement latency

in the second stage regression with a dummy variable that indicates the observations with

negative returns. The results show no differential impact of DLT settlement latency dur-
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ing negative return days compared to the overall sample period. These symmetric effects

reinforce the robustness of our results, suggesting that our findings are not influenced by

variations in market conditions, which could be affected by market raises and falls (Zhang

et al. (2020)).

The implications of our findings carry significant policy implications, particularly with

regard to the market design of cryptocurrency market infrastructure, including the post-

trade settlement process. DLT promises to shorten the settlement cycle to minutes in a

decentralized manner by removing intermediaries and relying on a network of miners

to record transactions. Consequently, it introduces non-negligible uncertainty due to the

stochastic nature of settlement time and to the lack of regulated and trusting entities over-

seeing the settlement cycle. Such market friction leads to significant adverse impacts on

market liquidity and trading costs, undermining the overall market quality. Policymakers

and market operators should take into account the inherent features of the blockchain

technology and the trade-off between near instant settlement and market quality, when

evaluating DLT settlement.

Related literature

Notwithstanding the importance of settlement, there is limited study on its effect on

market quality, due to the difficulty in identification. In a theoretical model, Hautsch et al.

(2024) predict that arbitrage boundaries in cryptocurrency trading increase with expected

settlement latency and latency uncertainty, affecting market efficiency and price formation.

While our paper doesn’t directly test this hypothesis, our findings align with the model’s

predictions. In a related empirical analysis, Scharnowski and Shi (2021) investigate the

reduction in blockchain mining power caused by an electricity blackout, highlighting sub-

sequent deterioration in liquidity. Our paper employs blockchain mining power as an

instrument for DLT settlement latency and identifies settlement latency as an explanation

for their observed liquidity deterioration.

Our research also bridges and contributes to two strands of existing literature, by con-
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necting the inherent features of blockchain to crypto market quality. The first strand is the

broader literature exploring how blockchain characteristics, such as mining and network

features, influence the pricing of cryptocurrencies. In a theoretical model, Pagnotta and

Buraschi (2018) argue that the blockchain’s hashrate and the price of Bitcoin are jointly

determined since miners receive Bitcoin as a reward for validating transactions. Pagnotta

(2022) further links Bitcoin prices to the security level of the blockchain, which is contin-

gent on the aggregate mining power. Additionally, Easley et al. (2019) present a model

that emphasizes the relationship between Bitcoin price, mining rewards, transaction fees,

and waiting time. On the empirical front, Liu and Tsyvinski (2021) use the price of min-

ing hardware and electricity costs as proxies for mining expenses and find that mining

characteristics do not move with cryptocurrency returns. However, Bhambhwani et al.

(2021) demonstrate that blockchain hashrate and cryptocurrency prices are cointegrated

with mining capacity.

Furthermore, our paper relates to the second strand of literature that investigates

the market quality provided by cryptocurrency trading platforms. In terms of liquidity,

Brauneis et al. (2021) analyze trading and quote data of Bitcoin and Ether to compare

the accuracy of different low-frequency liquidity measures. Barbon and Ranaldo (2022)

compute and compare transaction costs between centralized platforms (e.g., Binance) and

decentralized platforms (e.g., Uniswap), finding that transaction costs tend to be lower

on centralized platforms. Additionally, several studies investigate arbitrage opportunities

and price discrepancies among multiple crypto-trading platforms. Makarov and Schoar

(2020) construct an arbitrage index using intraday trading data from a larger sample of

13 crypto trading platforms and aim to explain the drivers of price discrepancies. Mean-

while, Crépellière et al. (2023) observe a decrease in arbitrage opportunities in the crypto

market after 2018.

While we focus on settlement latency, the existing literature has provided evidence on

other types of latency in the trading process. Hasbrouck and Saar (2013) investigates exe-
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cution latency, which is the time taken between order submission and execution, highlight

its crucial role for high-frequency traders. Holden et al. (2023) takes into account the time

need for messages to be sent from exchange to the securities information processor (SIP)

in the U.S. market to enhance the matching of trades and quotes.

The subsequent sections of the paper are structured as follows. Section 2 delves into a

brief overview of DLT settlement and blockchain mining. Section 3 outlines the data sam-

ple used in our analysis and elaborates on the construction of liquidity measures. Section

4 presents our identification strategy and discusses the empirical results. Finally, Section 5

serves as the conclusion, summarizing the key findings and implications of our study.

2 Overview of DLT settlement and blockchain mining

Settlement, the conclusive stage of the trading process, marks the legal exchange of own-

ership in financial markets. Traditional settlement procedures involve the transfer of secu-

rities or financial instruments by sellers to buyers, as well as the transfer of money from

buyers to sellers. Typically overseen by central securities depositories (CSDs), this process

historically took several business days but has seen recent efforts to reduce settlement cy-

cles. For example, in February 2023, the U.S. Securities and Exchange Commission (SEC)

adopted rule amendments to shorten the standard settlement cycle from two business

days after the trade date (“T+2”) to one business day after the trade date (“T+1”) by May

2024.4 With the trusted and regulated entities guaranteeing the settlement process and

with central clearing provides the opportunity for an immediate continuation of trading

on a newly acquired position, the settlement process involves close to none uncertainty,

and its latency is normally negligible for most market participants.

Distributed ledger technologies (DLT), exemplified by blockchain, present an alter-

native by offering near-instantaneous settlement and reducing dependence on interme-

4For more information, see https://www.sec.gov/investment/settlement-cycle-small-entity-compliance-
guide-15c6-1-15c6-2-204-2
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diaries. Unlike traditional systems where trusted entities ensure ownership transfer in-

tegrity, DLT relies on decentralization and consensus mechanisms. More specifically, DLT

leverages blockchain’s digital, decentralized ledger to expedite settlements. Transactions

are grouped into blocks, linked through cryptographic hashes, and time-stamped. In a

blockchain system like Bitcoin, consensus is maintained through Proof-of-Work (PoW), a

mechanism where users, or miners, validate transactions by solving computationally inten-

sive problems. Miners invest computational power and electricity, acting as a stake in the

network. Once a solution is found, a block is submitted for validation, and the settlement

of the transactions recorded in this block is completed.

The speed of DLT settlement is influenced by two main factors: the overall mining ca-

pacity of the network and the difficulty of the computational problem. The overall mining

capacity of the blockchain network plays a crucial role in the validation speed. The more

computational power dedicated to mining, the higher the chances of finding a valid solu-

tion within a shorter time. Insufficient mining capacity, on the other hand, can result in

slower block validation times as there are fewer hash guesses completed by the network

within a given period. Insufficient mining power in the network could also reduce the

security of the blockchain, allowing malicious participants to fork the chain, potentially

leading to settlement failures (Chiu and Koeppl (2019)). In addition, the difficulty of solv-

ing the computational problem determines the level of computational effort required to

find a valid solution. The difficulty is adjusted dynamically to ensure that the average time

to validate a new block remains relatively constant. In the case of Bitcoin, the target is

to add one block to the blockchain approximately every ten minutes. If blocks are vali-

dated faster than this target rate, indicating an increase in mining capacity, the difficulty

is automatically adjusted to become more challenging.

Hashrate is a common measure used to quantify the computing power of a blockchain

network, specifically in the context of mining. Hashrate represents the number of crypto-

graphic hash calculations that a mining device or network can perform per second. The
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hashrate of a mining device is dependent on its hardware specifications and capabilities.

Different types of hardware, such as CPUs (Central Processing Units), GPUs (Graphics Pro-

cessing Units), and ASICs (Application-Specific Integrated Circuits), have varying levels of

computational power and, consequently, different hashrates. A typical high-performance

CPU can achieve a hashrate of around 20,000 hashes per second (H/s). GPUs, which are

commonly used for mining, can achieve hashrates in the range of 0.4 Gigahashes per sec-

ond (GH/s). ASICs, which are specialized mining devices designed specifically for mining

cryptocurrencies, can achieve significantly higher hashrates, reaching around eight Tera-

hashes per second (TH/s).

3 Data and variable construction

In our analysis, we leverage data from three primary sources. The first one is Kaiko, a

crypto data vendor providing comprehensive cryptocurrency market data, which is utilized

in other empirical studies within the field.5 Specifically, we acquire historical intraday or-

der book and trading data for three major cryptocurrencies: Bitcoin, Ether, and Litecoin, all

of which are traded against the U.S. dollar. The data encompasses the period from January

to June 2021. To ensure the reliability and consistency of our data, our focus is specifically

directed towards three major cryptocurrency trading venues: Coinbase, Kraken, and FTX.

These venues have substantial trading volumes and active user bases. The selection of

these platforms aims to mitigate potential issues related to false or fabricated trading vol-

umes, a concern prevalent in the cryptocurrency market. Notably, a report by Hougan et al.

(2019) highlights that only a limited number of platforms, including those in our sample,

are identified as having “real volume” and maintaining relatively high standards of trading

transparency and integrity. In addition to their credibility, these platforms facilitate crypto-

fiat transactions, such as trading Bitcoin using U.S. dollars, as opposed to platforms like

5See Biais et al. (2023); Makarov and Schoar (2020); Bhambhwani et al. (2021); Barbon and Ranaldo
(2022); Crépellière et al. (2023) for examples of studies incorporating Kaiko’s data.
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Binance, which exclusively permit crypto-crypto or crypto-stablecoin transactions.

For the order book data, we capture the best bid and ask prices at a frequency of

two observations per minute on each platform. Subsequently, for every minute and trad-

ing platform, we compute the volume-weighted bid and ask prices, forming minute-level

observations. Additionally, our dataset includes minute-level information on prices and

trading activity, encompassing details such as the last price and trading volume.

We supplement our analysis with data from Coin Metrics, which provides us with daily

measurements of the Bitcoin blockchain’s hashrate. The hashrate serves as an indirect

measure of the aggregate computing capacity of the blockchain network. While the actual

hash rate is not directly measured, it is estimated based on the number of blocks mined

during a given day and the mining difficulty.

Completing our data collection, we obtain the daily median confirmation time from

blockchain.com. Confirmation time denotes the duration required to validate one block

on the Bitcoin blockchain. It is worth noting that due to data limitations, there are some

missing values in the confirmation time data for January 2021, the initial month of our

data sample. To address this issue, we employ interpolation with a quadratic function to

complete the data sample. The results remain qualitatively unchanged when using either

the interpolated values or dropping the missing days. For the purposes of this paper, we

present the results utilizing the interpolated dataset.

3.1 Liquidity measures

Our primary objective is to examine the causal impact of DLT settlement latency on market

liquidity. In pursuit of this goal, we assemble intraday data on cryptocurrency trading and

quote activity, collected at a minute-level frequency. This dataset serves as the basis for

computing diverse liquidity measures. However, considering that blockchain confirmation

latency is reported on a daily basis, we adopt an approach of aggregating the minute-level

data to a daily frequency for each cryptocurrency and trading venue.
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For each trading venue i and cryptocurrency j, we employ minute-level data (denoted

by subscript τ) to estimate daily (denoted by subscript t) return characteristics and liq-

uidity measures. The specific methods employed for estimation are described below, with

subscripts i and j suppressed in the formulas. Additionally, we scale the variables by a

multiplier to enhance interpretability.

Return characteristics

• Return (r)

Return is the natural logarithmic difference between the beginning and closing quoted

midpoint, which is the average of the best bid and ask prices pricemid
t = (priceaskt +

pricebidt )/2. We scale the measure by 100.

rt = [log(pricemid
t )− log(pricemid

t−1)]× 100

• Volatility (σ)

Return volatility is measured by the realized volatility, which is the squared root of

the sum of the intraday squared returns. We scale the measure by 100.

σt =

 ∑
τ

r2τ × 100

Liquidity measures

• Kyle and Obizhaeva (2016) estimator (k)

Kyle and Obizhaeva (2016) derive an illiquidity index based on the ratio of volatility

to dollar volume of an asset within a given interval. We scale the measure by 10,000.

kt =

ñ
σ2
τ∑

τ volumeτ × priceτ

ô1/3
× 10, 000

• Percentage effective spread (ES)
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The percentage effective spread is calculated as follow. The daily percentage effective

spread is the simple average of the intraday measure. We scale the measure by

10,000 to convert the unit to basis points.

ESτ =
2× |pricetradeτ − pricemid

τ |
pricemid

τ

ESt = ESτ × 10, 000

where pricetradeτ is the transaction price recorded during the same minute.

• Kyle’s Lambda (λ)

Kyle (1985)’s Lambda measures the cost, in terms of price movement, of taking liq-

uidity and is an inverse measure of liquidity. To compute the daily Kyle’s Lambda, we

estimate the OLS coefficient λ using the intraday observations. We scale the measure

by 10,000.

rτ = c+ λDτ log(volumeτ × pricetradeτ ) + ετ

λt = λ̂× 10, 000

where Dτ is the sign of trade backed out the Lee and Ready (1991) algorithm.

• Percentage quoted spread (QS)

The percentage quoted spread is the difference between the best ask price (priceask)

and the best bid price (pricebid) of each order book snapshot, divided by the quote

midpoint (pricemid). The daily percentage quoted spread is the simple average of

the intraday measure. We scale this measure by 10,000 to convert the unit to basis
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points.

QSτ =
priceaskτ − pricebidτ

pricemid
τ

QSt = QSτ × 10, 000

[Table 1 about here.]

Table 1 presents the summary statistics for the blockchain hashrate and the market

quality measures discussed in this section. The average blockchain mining power is 1.5×108

Terahash/s. The average of the median confirmation time is 11.4 minutes, with a standard

deviation close to three minutes. It is important to note that our confirmation time data

represents the daily median measure, and thus, our sample standard deviation underesti-

mates the block-by-block variation in settlement latency and the economic magnitude of

the impact when we discuss the results. According to Zhang et al. (2021), the block-by-

block standard deviation estimation of blockchain confirmation time is approximately 8.36

minutes. In our empirical discussion, we provide interpretations based on both standard

deviation estimates.

[Table 2 about here.]

Highlighting cross-sectional differences, Table 2 presents summary statistics for each

cryptocurrency traded on each trading venue. When comparing the three cryptocurrencies,

it is evident that Bitcoin exhibits a more favorable liquidity condition, reflected in lower

values for all inverse liquidity measures, including the Kyle and Obizhaeva (2016) mea-

sure, effective spread, Kyle’s Lambda, and quoted spread. Following this ranking, Ether

demonstrates better liquidity conditions compared to Litecoin, which experiences the least

favorable liquidity conditions within the group. Turning to the distinctions among the three

trading venues, Coinbase emerges as the largest in terms of trading volume, handling a
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volume surpassing the total of the other two combined. FTX and Kraken demonstrate com-

parable trading volumes for Bitcoin, while Kraken holds a higher trading volume for Ether

and Litecoin compared to FTX. Regarding liquidity conditions, Coinbase generally pro-

vides higher liquidity, except for the effective spread measure. The heterogeneity among

the cryptocurrency and the trading venue prompts us to include fixed effects estimation,

in addition to the basic pooled OLS estimation, in our paper.

4 Effect of settlement latency on liquidity

4.1 Mining power as instrument

Recognizing the challenges posed by endogeneity issues in identifying the impact of the

settlement process on the trading process is crucial, as omitted variable may confound

the identification, and reverse causality may arise as the trading precedes the settlement

process. To mitigate these issues and potential estimation biases, we employ an instru-

mental variable (IV) approach in our analysis. This method provides a robust framework

to disentangle the causal relationship between the DLT settlement process and the trading

process.

We identify an instrument for DLT settlement latency by leveraging a distinctive as-

pect of the Bitcoin blockchain validation process—the aggregate mining power of the

blockchain. The time required to validate (i.e., settle) cryptocurrency transactions involves

solving a computationally intensive puzzle through continuous guessing and computation

of hash functions. Consequently, lower mining power, which could result from factors

such as reduced participant numbers, increased electricity costs, or power outages, is an-

ticipated to increase settlement latency, as the validation of transactions takes longer. For

instance, with a decrease in mining power, there could be fewer miners actively partici-

pating in solving the cryptographic puzzle. This can lead to longer intervals between the

creation of new blocks because there are fewer attempts to find a valid hash.
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Figure 1 visually represents the daily median confirmation time and aggregate hashrate

for the Bitcoin blockchain over time, highlighting a clear negative association between the

two blockchain mining features. Furthermore, the correlation coefficient between the two

series is -0.586, indicating a substantial and negative correlation.

[Figure 1 about here.]

In our instrumental variable setup, blockchain mining power influences settlement la-

tency as one of the key determinants (inclusion restriction). Also importantly, a priori,

mining power does not directly impact cryptocurrency market liquidity or trading costs,

satisfying the exclusion restriction. Therefore, blockchain mining power emerges as a suit-

able instrument for DLT settlement latency, enabling us to explore its effects on market

liquidity with confidence in the instrument’s relevance and exogeneity.

We employ the 2-Stage Least Squares (2SLS) method for our instrumental variable

estimation. In the first stage, the daily median confirmation time is regressed on the

concurrent blockchain mining hashrate, as depicted in Equation (1). Although the detailed

estimation results are not reported here, it is noteworthy that the estimated coefficient of

β0 is negative and statistically significant (p-value < 0.001). Additionally, the first stage

model exhibits a F-statistic of 94.65, surpassing the recommended lower bound of 10 and

being highly significant (p-value < 0.001). This robust first stage supports the validity and

strength of our instrumental variable in capturing the variation in settlement latency.

ConfirmationT imet = c+ β0Hashratet + et (1)

In the second stage, we proceed to regress the market measures on the fitted values

of the median confirmation time from the first stage regression, incorporating controls

and fixed effects, as expressed in Equation (2). To be specific, for crypto trading venue i,

cryptocurrency j, and day t, Yi,j,t represents the market measure detailed in Section 3.1.¤�ConfirmationT imet denotes the fitted value obtained from the first stage regression. Ad-
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ditionally, we include controls for cryptocurrency return, volatility, and log trading volume.

We conduct the second stage regression using pooled OLS and introduce various fixed

effects, such as trading venue fixed effects and cryptocurrency fixed effects, or trading

venue-cryptocurrency fixed effects. To address potential correlation within each trading

platform and cryptocurrency, we cluster the standard errors at the cryptocurrency-trading

venue level.

Yi,j,t = β1
¤�ConfirmationT imet + Γ′Controlsi,j,t + FEs+ εi,j,t (2)

where

Controlsi,j,t = {rj,t, σj,t, log(V olumei,j,t)}

To reinforce the validity of our instrumental variable approach, we conduct the aug-

mented Durbin–Wu–Hausman test, as recommended by Davidson et al. (1993), demon-

strating that DLT settlement latency is indeed endogenous. Specifically, we include the

residual of the first stage regression and the endogenous and not fitted ConfirmationT ime

in the second stage regression. A significant coefficient on the first stage residual indicates

that the dependent variable is correlated with some unobserved variables influencing set-

tlement latency. In other words, our instrument is needed to alleviate the concern of endo-

geneity associated with DLT settlement latency. The p-values of the Durbin–Wu–Hausman

tests are reported in all of our tables, and the majority of them are statistically significant.

4.2 Liquidity and trading cost

To assess the direct impact of DLT settlement latency, we first focus on liquidity. Our

hypothesis posits that longer confirmation times would reduce liquidity, as increased un-

certainty in settlement might discourage traders from participating in the market. Traders

may be discouraged to participation, worrying about the possibility that their trades could

not be settled on time or worse, settled at all. To test this, we utilize the Kyle and Obizhaeva
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(2016) illiquidity measure, where a higher value indicates lower liquidity. Notably, in

a comparative study of liquidity measures in the cryptocurrency market, Brauneis et al.

(2021) find that this estimator outperforms others and reliably identifies liquidity differ-

ences among crypto trading venues.

Table 3 presents the IV estimation results of Equation (2) using the illiquidity measure

as the dependent variable. The estimated coefficients of confirmation time are consis-

tently positive and statistically significant across the three estimations with different fixed

effects. Under the pooled OLS estimation (Column (1)), the effect is significant at a 90%

confidence level. In the models with fixed effects (Columns (2) and (3)), the effect is

significant at a 99% confidence level. This finding suggests that DLT settlement latency

indeed reduces liquidity levels.

Interpreting the results based on the fixed effect estimations, we find that a one-minute

increase in settlement latency increases the Kyle and Obizhaeva (2016) measure by 0.009

basis points. In relation to the average value of 0.344 basis points (as reported in Table 1),

this effect represents an increase of about 2.62%. Alternatively, a one-standard deviation

increase in settlement time leads to a 7.82% decrease in liquidity relative to the sample

average.

[Table 3 about here.]

As previously discussed, our confirmation time data is the daily median measure, caus-

ing our sample standard deviation to underestimate the block-by-block variation in settle-

ment latency. Drawing on the block-by-block standard deviation estimation of 8.36 min-

utes by Zhang et al. (2021), a one-standard deviation increase in settlement time results

in a substantial 21.87% reduction in liquidity relative to the sample average. This eco-

nomically significant impact underscores that DLT settlement latency has a non-negligible

negative effect on liquidity.

To provide a more comprehensive analysis of the impact of DLT settlement latency, we

delve into more aspects of liquidity, including transaction costs. Table 4 presents the IV es-
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timation results, with the percentage effective spread as the dependent variable. Columns

(1) to (3) report estimates obtained by including different fixed effects. The results are

qualitatively similar across these specifications—the estimated coefficients on confirma-

tion time are consistently positive and statistically significant at the 99% confidence level.

These results suggest that a one-minute increase in settlement time increases the ef-

fective spread by approximately 0.22 basis points. Relative to the average effective spread

of 17.48 basis points (as reported in Table 1), this effect represents an increase of about

1.26%. Alternatively, a one-standard deviation increase in settlement time leads to a 3.76%

increase in effective spread relative to the sample average. When considering the block-

by-block confirmation time standard deviation estimate from Zhang et al. (2021), the

magnitude is equivalent to a 10.53% increase in trading costs. These findings highlight

the adverse impact of DLT settlement latency on transaction costs.

[Table 4 about here.]

Considering that part of the transaction cost is associated with the price impact faced

by traders when placing large orders, evidence of the adverse impact of DLT settlement

latency on liquidity and trading costs would suggest an expectation of larger price impact

in cryptocurrency trading as DLT settlement latency lengthens. The IV estimation results in

Table 5, where Kyle’s Lambda is the dependent variable, indeed support this expectation.

Estimates of confirmation time are consistent across Columns (1) to (3) of the table, all

positive and statistically significant with p-values < 0.01. These results imply that a one-

minute increase in settlement time increases Kyle’s Lambda by about 0.015 basis points.

Relative to the average value of 0.999 basis points (as reported in Table 1), this effect

represents an increase of about 1.5%. Alternatively, a one-standard deviation increase in

settlement time leads to a 4.49% (or 12.54% with Zhang et al. (2021)’s block-by-block

standard deviation estimate) increase in price impact relative to the sample average.

[Table 5 about here.]
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In summary, the results presented in Tables 3 to 5 consistently demonstrate that a

longer DLT settlement latency has adverse effects, reducing liquidity and increasing trans-

action costs in cryptocurrency trading. The uncertainty associated with DLT settlement

discourages investors from participating, resulting in insufficient liquidity in the market.

Consequently, those still engaged in cryptocurrency trading face higher transaction costs

and experience larger price impacts. These findings underscore the importance of efficient

DLT settlement processes for maintaining a well-functioning and liquid cryptocurrency

market.

4.3 Liquidity supply and spread decomposition

Our results so far suggest that the uncertainty associated with DLT settlement latency

reduces liquidity and increases transaction costs of cryptocurrency trading. To provide a

deeper understanding of how liquidity supply is affected, we conduct our IV analysis using

the percentage quoted bid-ask spread as the dependent variable and present the results

in Table 6. The estimated coefficients exhibit negative values with varying confidence

levels—the pooled OLS estimate is significant at the 95% confidence level, the venue and

crypto fixed effect estimate is not statistically significant, and the venue-crypto fixed effect

estimate is significant at the 90% confidence level. These results suggest that settlement

latency either reduces the quoted bid-ask spread or has no significant impact. In terms of

magnitude, the impact of a one-standard deviation increase in confirmation time on the

reduction in bid-ask spread ranges from 6.61% to 11.26%. The negative impact seems not

to align with our previous findings that settlement latency increases transaction costs and

reduces liquidity.

[Table 6 about here.]

To further examine the impact of settlement latency on liquidity supply, we follow

Huang and Stoll (1997) to decompose the quoted bid-ask spread into three cost compo-
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nents: adverse selection cost, inventory cost, and fixed costs, using intraday quotes and

trading data. For each cryptocurrency and each trading venue, we employ a two-stage

generalized method of moment (GMM) method to estimate the following model:

Qτ = (1− 2π)Qτ−1 + ετ

∆Pτ =
S

2
Qτ + (α + β − 1)

S

2
Qτ−1 − α

S

2
(1− 2π)Qτ−2 + eτ (3)

In the given model, ∆Pτ represents the change in transaction price, and Qτ denotes

the buy-sell indicator determined by the Lee and Ready (1991) algorithm. This buy-sell

indicator takes a value of 1 for buy-initiated trades and -1 for sell-initiated trades. The

parameters to be estimated are denoted as θ = [π, α, β, S]′. Specifically, π quantifies the

probability of a reversal in trade direction, α captures the proportion of the spread at-

tributed to adverse selection costs, β represents the proportion of the spread attributed to

inventory costs, and S quantifies the spread itself. Consequently, the fixed cost component

of the spread is calculated as (1− α− β).

In Panel A of Table 7, the summary statistics of the spread decomposition results are

presented. The findings reveal that, on average, adverse selection cost and inventory cost

contribute to 50% and 45% of the spread, respectively. Notably, these weights significantly

surpass those observed in equity markets.6 This disparity suggests that the cryptocurrency

market exhibits higher levels of information asymmetry, and managing inventory is com-

paratively more costly in this market than in the equity market.

[Table 7 about here.]

In Panel B of Table 7, the IV estimation results for the three components of the bid-ask

spread are provided. Beginning with the first component of the spread decomposition,

adverse selection cost, our expectation is that the uncertainty induced by DLT settlement

6For instance, when examining a sample of large stocks in the U.S., Huang and Stoll (1997) estimate that
the weights of adverse selection cost and inventory cost are 9.6% and 28.7%, respectively.
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latency would impede the participation of informed traders, while uninformed liquidity

traders would continue to operate in the market. Consequently, we hypothesize that liq-

uidity suppliers would face lower adverse selection costs. Columns (1)-(3) focus on the

adverse selection component and affirm our hypothesis, as the estimated coefficients for

confirmation time are negative and statically significant. Interpreting the results, we find

that a one-minute increase in DLT settlement latency results in a reduction of the weight

of adverse selection cost by 1.2 percentage points. These results demonstrate a nega-

tive impact of settlement latency on adverse selection, suggesting that liquidity suppliers

encounter less informed trading and are willing to post narrower bid-ask spreads when

settlement latency increases. This finding further support our argument that DLT settle-

ment uncertainty deters market participants, particularly informed traders in this context.

Our result aligns with the theoretical model of Hautsch et al. (2024), where the authors

predict that arbitrageurs find it more challenging to exploit price discrepancies when DLT

settlement latency lengthens, resulting in a broader limit-to-arbitrage bound. Thereby,

liquidity suppliers face reduced adverse selection risk.

We then move on to the second component of the spread decomposition, inventory

cost. These costs emerge when liquidity suppliers need to off-load involuntarily accumu-

lated cryptocurrency positions to mitigate risks. In this case, liquidity suppliers function as

liquidity traders and face liquidity deterioration stemming from DLT settlement latency.

As a result, we expect higher inventory costs when DLT settlement latency lengthens.

Columns (4)-(6) present the IV estimation results for inventory costs, confirming our pre-

dictions. The estimated coefficients, consistently at 0.016 with p-values < 0.05 across all

three fixed-effect specifications, demonstrate that a one-minute increase in DLT settlement

latency elevates the weight of inventory cost by 1.6 percentage points. This adverse impact

verifies that DLT settlement latency amplifies inventory costs faced by liquidity suppliers,

supporting our previous finding that DLT settlement latency reduces liquidity. An addi-

tional channel for this adverse impact could be attributed to the extended holding time of
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cryptocurrency positions due to settlement latency.

Finally, examining the fixed component of the bid-ask spread, we hypothesize that DLT

settlement latency would have no significant impact, as it should not affect the fixed cost

of liquidity supplier. Indeed, the estimation results in Columns (7) to (9) confirm this

observation, showing non-statistically significant coefficients for confirmation time.

In summary, while DLT settlement latency appears to narrow the quoted bid-ask spread,

in seeming disagreement with our main result indicating reduced liquidity, despite their

weak statistical significance. Further investigation into the spread components provides

an explanation. We observe that DLT settlement latency lowers the adverse selection costs

borne by liquidity suppliers, confirming that settlement uncertainty deters investor partic-

ipation, especially among informed traders. Additionally, we find that settlement latency

heightens inventory management costs due to lower liquidity. Finally, we discern no sig-

nificant effect of DLT settlement latency on the fixed cost component. The opposite effects

on the spread components, which in aggregate result in a narrowing of the bid-ask spread

when DLT settlement prolongs, align with our main findings and provide further evidences

that DLT settlement latency reduces liquidity.

4.4 Comparing trading venues and cryptocurrencies

In this section, we perform subsample analyses to investigate the cross-sectional differ-

ences in our dataset. Specifically, we examine the impact of DLT settlement latency on

two dimensions: trading venues and cryptocurrencies. To explore these differences, we

conduct separate second-stage IV regressions for each dimension as follow.

For each trading venue:

Yj,t = β1
¤�ConfirmationT imet + Γ′Controlsj,t + FEj + εj,t (4)
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For each cryptocurrency:

Yi,t = β1
¤�ConfirmationT imet + Γ′Controlsi,t + FEi + εi,t (5)

where FEj is the cryptocurrency fixed effect, and the standard errors are clustered by

cryptocurrency in Equation (4). FEi is the trading venue fixed effect, and the standard

errors are clustered by trading venue in Equation (5). The other variables follow the same

setup as in our main IV model in Equation (2).

[Table 8 about here.]

Table 8 presents the IV estimation coefficients of confirmation time, with other test

statistics omitted for brevity. In Panel A, the results compare the three trading venues.

Firstly, we observe that the estimations for the Kyle and Obizhaeva (2016) measure, ef-

fective spread, and Kyle’s Lambda are positive and statistically significant across different

trading venues. These results are consistent with our main finding. The decline in liquid-

ity and the increase in trading costs due to DLT settlement latency are evident across all

cryptocurrency trading platforms. Additionally, when comparing the magnitudes, we find

that the effects of DLT settlement latency are more pronounced in smaller venues (FTX

and Kraken) than in the larger one (Coinbase). Regarding the quoted bid-ask spread, the

estimated coefficients indicate that DLT settlement latency reduces the spread in Coinbase,

increases it in FTX, and has no significant impact in Kraken.

Panel B of Table 8 compares the three cryptocurrencies. The estimated coefficients

are generally consistent, although some are not statistically significant. Overall, the com-

parison indicates that the effect of DLT settlement latency is more pronounced for the

trading of Bitcoin, which is the native coin of the Bitcoin blockchain used for settlements.

Litecoin, sharing a slightly modified Bitcoin codebase and resembling many of Bitcoin’s

features, also experiences significant impacts. On the other hand, Ether, associated with

the Ethereum blockchain created differently with smart contract functionality, shows the
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smallest impact from the Bitcoin blockchain settlement latency.

In summary, through subsample comparison, we document that the negative effects

of DLT settlement latency on liquidity and trading costs are evident across different cryp-

tocurrency trading venues and different cryptocurrencies. Furthermore, we find that such

effects are more pronounced for smaller trading venues and for the trading of the settle-

ment blockchain’s native cryptocurrency.

4.5 Negative return days

Cryptocurrency market quality may exhibit differences during bull and bear market pe-

riods (Zhang et al. (2020)), with liquidity generally lower during market declines. As a

robustness test to address concerns about changes in market conditions driving our results,

we conduct a comparison between positive return days and negative return days. This is

accomplished by introducing an interaction term with a dummy variable r−j,t in our second-

stage IV estimation. For cryptocurrency j and day t, R−
j,t equals one on negative return days

and zero otherwise. In our sample, 47.84% of the observations occur on negative return

days. The regression model is formulated as below.

Yi,j,t = β1
¤�ConfirmationT imet + β2

¤�ConfirmationT imet × r−j,t + β3r
−
j,t

+ Γ′Controlsi,j,t + FEs+ εi,j,t (6)

where

r−j,t = 1 if rj,t < 0, 0 otherwise

Controlsi,j,t = {rj,t, σj,t, log(V olumei,j,t)}

The coefficient β2 captures the differential impact of DLT settlement on the dependent

variable when the market declines, in addition to the average impact during the entire
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sample period.

[Table 9 about here.]

Table 9 reports the estimated results. The β2 coefficients are statistically insignificant

for all the liquidity measures we investigate, and the coefficient on confirmation time

remains consistent with our main results. These symmetric effects during market declines

and market rallies confirm that our results are not driven by market conditions, supporting

our identification of the effect of DLT settlement latency.

5 Conclusion

In conclusion, this study delves into the relationship between DLT settlement latency and

market quality in the cryptocurrency space. In the financial markets, settlement processes

hold a pivotal role in ensuring secure and efficient asset exchange. Traditional settlement

involves the physical transfer of securities and funds, overseen by trusted entities like cen-

tral securities depositories, thereby incurring minimal uncertainty. On the contrary, DLT,

particularly blockchain, offers an alternative by aiming for near-instantaneous transactions

and reduced reliance on intermediaries. However, the adoption of DLT introduces com-

plexities, primarily associated with settlement latency due to factors like overall mining

capacity affecting block validation speed, leading to uncertainty in the settlement process.

This study, employing the cryptocurrency market as a unique laboratory, identifies the

causal effects of DLT settlement latency on liquidity. We propose blockchain mining power

as a potential instrument for settlement latency and implement a 2-Stage Least Square ap-

proach in our IV estimation to address endogeneity concerns. We find that the uncertainty

introduced by DLT settlement discourages investor participation, resulting in a deteriora-

tion of liquidity and an increase in transaction costs. These effects persist across various

liquidity measures and are more pronounced in smaller trading venues and for the na-
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tive cryptocurrency of the settlement blockchain. Our result stands robust in the face of

instrumental variable validation tests and robustness tests.

The policy implications derived from our study are substantial, especially in shaping

the market design of cryptocurrency infrastructure. DLT, with its promise of decentralized

and swift settlement cycles, comes at the cost of introducing non-negligible uncertainty

due to the stochastic nature of settlement time. Policymakers and market operators should

carefully consider this trade-off between near-instant settlement and market quality. The

findings highlight the need for regulatory adaptation to emerging technologies in the cryp-

tocurrency space, balancing the advantages of DLT with the potential adverse impacts on

liquidity and trading costs.
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Figure 1. Blockchain confirmation time and hashrate

This figure plots the daily median confirmation time and aggregate hashrate for the Bitcoin blockchain over time.
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Table 1. Summary statistics

This table reports time series summary statistics (Panel A) and the full sample statistics (Panel B). The sample period is January to
June 2021. The construction of the measures is described in Section 3.1.

Panel A: time series

count mean std 25% 50% 75%

Hash rate (Terahash/s) 180 1.508×108 2.174×107 1.408×108 1.540×108 1.654×108

Median confirmation time (minute) 180 11.421 2.988 9.835 11.121 12.575

Return (%) Bitcoin 180 0.079 4.933 -2.340 -0.054 2.729
Ether 180 0.469 6.815 -3.370 0.627 4.581

Litecoin 180 -0.029 7.554 -3.254 0.074 4.122

Realized volatility Bitcoin 180 5.381 2.554 3.788 4.767 6.226
Ether 180 6.767 3.846 4.521 5.737 7.972

Litecoin 180 7.943 3.937 5.455 6.902 9.593

Total volume (share) Bitcoin 180 39,360.221 22,021.419 26,974.716 33,380.525 46,304.832
Ether 180 593,245.523 384,724.255 327,338.125 467,877.960 740,114.929

Litecoin 180 724,039.177 428,983.459 382,542.276 654,892.574 948,734.111

Panel B: full sample

count mean std 25% 50% 75%

Return (%) 1620 0.173 6.516 -3.066 0.208 3.766
Realized volatility 1620 6.697 3.776 4.377 5.792 7.902
Volume (share) 1620 150,748.184 240,728.481 14,264.063 54,786.367 179,042.280
Kyle and Obizhaeva (bps) 1620 0.344 0.297 0.162 0.230 0.403
Percentage effective spread (bps) 1620 17.477 10.102 10.878 15.062 21.531
Kyle’s Lambda (bps) 1620 0.999 0.659 0.585 0.829 1.177
Percentage quoted spread (bps) 1620 3.346 5.910 0.658 1.466 3.144
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Table 2. Summary statistics by cryptocurrency and trading venue

This table reports summary statistics of the variables by cryptocurrency and trading venue. The sample period is January to June 2021.
The construction of the measures is described in Section 3.1.

Cryptocurrency Venue count mean std 25% 50% 75%

Trading volume (shares)

Bitcoin Coinbase 180 24,442.551 15,041.184 15,549.322 19,921.325 28,238.559
FTX 180 7,586.900 5,137.748 4,028.589 5,609.827 10,848.225

Kraken 180 7,330.770 4,393.883 4,598.284 6,147.704 8,894.595

Ether Coinbase 180 379,655.228 252,039.296 210,875.439 292,660.491 484,154.787
FTX 180 94,958.215 82,303.975 44,312.566 67,567.046 116,491.091

Kraken 180 118,632.080 76,869.544 64,251.364 94,613.264 150,303.313

Litecoin Coinbase 180 579,837.910 358,397.710 292,778.512 497,845.967 759,828.940
FTX 180 39,561.309 32,907.083 15,825.015 32,289.445 53,547.643

Kraken 180 104,728.689 65,037.913 55,749.452 88,668.921 130,876.554

Kyle and Obizhaeva (bps)

Bitcoin Coinbase 180 0.125 0.024 0.104 0.122 0.142
FTX 180 0.192 0.057 0.152 0.173 0.229

Kraken 180 0.182 0.035 0.153 0.181 0.206

Ether Coinbase 180 0.164 0.030 0.144 0.158 0.183
FTX 180 0.276 0.085 0.209 0.249 0.336

Kraken 180 0.241 0.064 0.207 0.231 0.263

Litecoin Coinbase 180 0.344 0.059 0.304 0.329 0.373
FTX 180 0.970 0.399 0.696 0.854 1.148

Kraken 180 0.598 0.118 0.515 0.574 0.657

Percentage effective spread (bps)

Bitcoin Coinbase 180 15.067 8.303 9.413 13.130 17.996
FTX 180 13.774 7.077 9.399 12.448 16.233

Kraken 180 13.145 8.138 7.737 11.628 16.414

Ether Coinbase 180 18.385 10.407 11.560 16.237 22.050
FTX 180 17.822 9.369 11.642 16.420 21.737

Kraken 180 16.460 10.301 9.146 14.363 20.425

Litecoin Coinbase 180 21.012 11.078 13.510 18.244 25.945
FTX 180 23.505 11.114 15.575 20.262 29.477

Kraken 180 18.122 9.962 11.743 15.292 20.906

Kyle’s Lambda (bps)

Bitcoin Coinbase 180 0.643 0.294 0.447 0.560 0.755
FTX 180 0.703 0.330 0.496 0.617 0.838

Kraken 180 0.706 0.319 0.492 0.652 0.859

Ether Coinbase 180 0.813 0.410 0.543 0.715 0.946
FTX 180 0.956 0.458 0.654 0.843 1.108

Kraken 180 0.919 0.458 0.611 0.825 1.065

Litecoin Coinbase 180 1.130 0.492 0.807 1.018 1.318
FTX 180 1.793 1.125 1.037 1.455 2.216

Kraken 180 1.332 0.652 0.871 1.218 1.616

Percentage quoted spread (bps)

Bitcoin Coinbase 180 0.636 0.596 0.256 0.455 0.752
FTX 180 1.058 0.987 0.373 0.596 1.679

Kraken 180 0.739 0.797 0.443 0.597 0.820

Ether Coinbase 180 1.159 0.820 0.689 0.968 1.322
FTX 180 2.652 2.223 0.916 1.652 4.183

Kraken 180 1.434 0.981 0.869 1.148 1.721

Litecoin Coinbase 180 3.434 1.313 2.536 3.063 4.119
FTX 180 15.787 10.828 9.527 12.484 18.923

Kraken 180 3.212 2.081 2.079 2.628 3.853
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Table 3. Kyle and Obizhaeva

This table presents the results of the second stage of the 2-stage least square (2SLS) estimation. The sample encompasses three
cryptocurrencies (Bitcoin, Ether, and Litecoin) traded on three crypto trading platforms (Coinbase, FTX, and Kraken) during the period
from January to June 2021. The dependent variable is the Kyle and Obizhaeva (2016) illiquidity measure. Confirmation time
represents the fitted value obtained from the first stage regression, utilizing blockchain mining rate as the instrument. Control variables
include cryptocurrency return, volatility, and log trading volume. We estimate the model using pooled OLS (Column (1)), trading venue
fixed effect and cryptocurrency fixed effect (Column (2)), and trading venue-cryptocurrency fixed effect (Column (3)). Standard errors
are clustered by trading venue-cryptocurrency and reported in parentheses. Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Kyle and Obizhaeva

(1) (2) (3)

Confirmation time 0.006∗ 0.009∗∗∗ 0.009∗∗∗

(0.003) (0.003) (0.003)
r 0.003 0.003∗∗∗ 0.002∗

(0.003) (0.001) (0.001)
σ 0.037∗∗ 0.042∗∗∗ 0.037∗∗∗

(0.019) (0.011) (0.014)
log(volume) −0.036 −0.234∗∗∗ −0.193∗∗

(0.053) (0.065) (0.088)
Constant 0.425

(0.532)

Venue FEs No Yes No
Crypto FEs No Yes No
Venue-crypto FEs No No Yes
SE Clustering Yes Yes Yes
Observations 1,620 1,620 1,620
R2 0.163 0.945 0.952
Adjusted R2 0.161 0.945 0.952
Durbin–Wu–Hausman (p-value) 0.005 0.545 0.519
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Table 4. Percentage Effective Spread

This table presents the results of the second stage of the 2-stage least square (2SLS) estimation. The sample encompasses three
cryptocurrencies (Bitcoin, Ether, and Litecoin) traded on three crypto trading platforms (Coinbase, FTX, and Kraken) during the period
from January to June 2021. The dependent variable is the percentage effective spread. Confirmation time represents the fitted value
obtained from the first stage regression, utilizing blockchain mining rate as the instrument. Control variables include cryptocurrency
return, volatility, and log trading volume. We estimate the model using pooled OLS (Column (1)), trading venue fixed effect and
cryptocurrency fixed effect (Column (2)), and trading venue-cryptocurrency fixed effect (Column (3)). Standard errors are clustered
by trading venue-cryptocurrency and reported in parentheses. Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Percentage Effective Spread

(1) (2) (3)

Confirmation time 0.212∗∗∗ 0.221∗∗∗ 0.215∗∗∗

(0.022) (0.021) (0.017)
r 0.049 0.051 0.042

(0.058) (0.065) (0.073)
σ 2.159∗∗∗ 2.199∗∗∗ 2.119∗∗∗

(0.308) (0.438) (0.508)
log(volume) 0.232 −0.400 0.232

(0.441) (1.854) (2.518)
Constant −1.928

(3.979)

Venue FEs No Yes No
Crypto FEs No Yes No
Venue-crypto FEs No No Yes
SE Clustering Yes Yes Yes
Observations 1,620 1,620 1,620
R2 0.664 0.919 0.920
Adjusted R2 0.663 0.918 0.919
Durbin–Wu–Hausman (p-value) 0.000 0.000 0.000
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Table 5. Kyle’s Lambda

This table presents the results of the second stage of the 2-stage least square (2SLS) estimation. The sample encompasses three
cryptocurrencies (Bitcoin, Ether, and Litecoin) traded on three crypto trading platforms (Coinbase, FTX, and Kraken) during the period
from January to June 2021. The dependent variable is the Kyle (1985)’s Lambda. Confirmation time represents the fitted value
obtained from the first stage regression, utilizing blockchain mining rate as the instrument. Control variables include cryptocurrency
return, volatility, and log trading volume. We estimate the model using pooled OLS (Column (1)), trading venue fixed effect and
cryptocurrency fixed effect (Column (2)), and trading venue-cryptocurrency fixed effect (Column (3)). Standard errors are clustered
by trading venue-cryptocurrency and reported in parentheses. Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Kyle’s Lambda

(1) (2) (3)

Confirmation Time 0.012∗∗∗ 0.015∗∗∗ 0.015∗∗∗

(0.004) (0.005) (0.005)
r 0.006 0.005 0.004

(0.006) (0.005) (0.006)
σ 0.142∗∗∗ 0.149∗∗∗ 0.144∗∗∗

(0.036) (0.037) (0.044)
log(volume) −0.039 −0.246∗ −0.208

(0.068) (0.147) (0.204)
Constant 0.328

(0.586)

Venue FEs No Yes No
Crypto FEs No Yes No
Venue-crypto FEs No No Yes
SE Clustering Yes Yes Yes
Observations 1,620 1,620 1,620
R2 0.583 0.918 0.919
Adjusted R2 0.582 0.917 0.918
Durbin–Wu–Hausman (p-value) 0.000 0.003 0.001
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Table 6. Percentage Quoted Spread

This table presents the results of the second stage of the 2-stage least square (2SLS) estimation. The sample encompasses three
cryptocurrencies (Bitcoin, Ether, and Litecoin) traded on three crypto trading platforms (Coinbase, FTX, and Kraken) during the period
from January to June 2021. The dependent variable is the percentage quoted bid-ask spread. Confirmation time represents the
fitted value obtained from the first stage regression, utilizing blockchain mining rate as the instrument. Control variables include
cryptocurrency return, volatility, and log trading volume. We estimate the model using pooled OLS (Column (1)), trading venue fixed
effect and cryptocurrency fixed effect (Column (2)), and trading venue-cryptocurrency fixed effect (Column (3)). Standard errors are
clustered by trading venue-cryptocurrency and reported in parentheses. Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Percentage Quoted Spread

(1) (2) (3)

Confirmation time −0.126∗∗ −0.074 −0.084∗

(0.054) (0.066) (0.049)
r 0.083 0.078∗∗ 0.060

(0.068) (0.039) (0.043)
σ 0.793∗ 0.970∗∗∗ 0.806∗

(0.472) (0.365) (0.412)
log(volume) −0.840 −4.583∗∗∗ −3.307

(1.027) (1.601) (2.013)
Constant 8.573

(10.199)

Venue FEs No Yes No
Crypto FEs No Yes No
Venue-crypto FEs No No Yes
SE Clustering Yes Yes Yes
Observations 1,620 1,620 1,620
R2 0.190 0.739 0.785
Adjusted R2 0.188 0.738 0.784
Durbin–Wu–Hausman (p-value) 0.016 0.000 0.000
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Table 7. Bid-ask spread decomposition

This table presents in Panel A the summary statistics (mean, median, and standard deviation) for the three components of the Huang
and Stoll (1997) spread decomposition, which are the adverse selection component, inventory cost component, and the fixed cost
component. The statistics are reported for the full sample and for each cryptocurrency. Panel B presents the results of the second stage
of the 2-stage least square (2SLS) estimation. The sample encompasses three cryptocurrencies (Bitcoin, Ether, and Litecoin) traded on
three crypto trading platforms (Coinbase, FTX, and Kraken) during the period from January to June 2021. The dependent variables the
three components of the Huang and Stoll (1997) spread decomposition. Confirmation time represents the fitted value obtained from
the first stage regression, utilizing blockchain mining rate as the instrument. Control variables include cryptocurrency return, volatility,
and log trading volume. We estimate the model using pooled OLS, trading venue fixed effect and cryptocurrency fixed effect, and
trading venue-cryptocurrency fixed effect. Standard errors are clustered by trading venue-cryptocurrency and reported in parentheses.
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Panel A: Summary statistics

Adverse selection Inventory Fixed cost

mean median std mean median std mean median std

All 0.500 0.477 0.369 0.450 0.510 0.349 0.050 0.018 0.139
Bitcoin 0.545 0.480 0.303 0.460 0531 0.305 -0.005 -0.006 0.064
Ether 0.664 0.817 0.337 0.318 0.144 0.333 0.018 0.010 0.070
Litecoin 0.292 0.049 0.362 0.571 0.631 0.361 0.137 0.073 0.194

Panel B: Instrumental variable estimation

Adverse selection Inventory Fixed cost

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Confirmation time −0.010∗ −0.012∗∗ −0.012∗∗ 0.016∗∗ 0.016∗∗ 0.016∗∗ −0.005 −0.004 −0.005
(0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.004) (0.004) (0.004)

r −0.003∗∗∗ −0.003∗ −0.003 0.002 0.002 0.002 0.002 0.001∗∗∗ 0.001∗∗∗

(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.0003) (0.0002)
σ 0.008 0.011∗ 0.011∗ −0.009 −0.013∗∗ −0.010 0.001 0.003 −0.001

(0.008) (0.006) (0.006) (0.007) (0.006) (0.007) (0.004) (0.002) (0.001)
log(volume) 0.006 0.064∗∗∗ 0.062∗∗ −0.002 0.001 −0.025 −0.004 −0.065∗∗∗ −0.037∗∗

(0.035) (0.019) (0.027) (0.029) (0.025) (0.034) (0.017) (0.013) (0.015)
Constant 0.503 0.350 0.147

(0.351) (0.275) (0.234)

Venue FEs No Yes No No Yes No No Yes No
Crypto FEs No Yes No No Yes No No Yes No
Venue-crypto FEs No No Yes No No Yes No No Yes
Observations 1,620 1,620 1,620 1,620 1,620 1,620 1,620 1,620 1,620
R2 0.018 0.729 0.729 0.019 0.672 0.675 0.011 0.474 0.507
Adjusted R2 0.015 0.727 0.727 0.017 0.670 0.672 0.008 0.471 0.503
Durbin–Wu–Hausman (p-value) 0.031 0.229 0.253 0.000 0.002 0.001 0.335 0.150 0.246
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Table 8. Effect of settlement latency

This table presents the results of the second stage of the 2-stage least square (2SLS) estimation separated by trading venues (Panel A)
and by cryptocurrencies (Panel B). The sample encompasses three cryptocurrencies (Bitcoin, Ether, and Litecoin) traded on three crypto
trading platforms (Coinbase, FTX, and Kraken) during the period from January to June 2021. The dependent variables are the Kyle
and Obizhaeva (2016) measure, percentage effective spread, Kyle’s Lambda, and percentage quoted bid-ask spread. We only report the
Confirmationtime estimate, which represents the fitted value obtained from the first stage regression, utilizing blockchain mining rate
as the instrument. Control variables include cryptocurrency return, volatility, and log trading volume. We include cryptocurrency fixed
effect in Panel A and trading venue fixed effect in Panel B. Standard errors, reported in parentheses, are clustered by cryptocurrency in
Panel A and by trading venue in Panel B. Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Panel A: Comparing trading venues

Coefficient of Confirmation Time

Coinbase FTX Kraken

(1) (2) (3)

Kyle and Obizhaeva 0.006∗∗ 0.020∗∗ 0.011∗∗

(0.003) (0.008) (0.005)
Effective spread 0.250∗∗∗ 0.396∗∗∗ 0.389∗∗∗

(0.057) (0.061) (0.097)
Kyle’s Lambda 0.010∗∗ 0.041∗∗ 0.023∗∗∗

(0.005) (0.019) (0.005)
Quoted spread −0.050∗∗ 0.105∗∗ −0.019

(0.022) (0.045) (0.019)

Panel B: Comparing cryptocurrencies

Coefficient of Confirmation Time

Bitcoin Ether Litecoin

(1) (2) (3)

Kyle and Obizhaeva 0.004∗∗∗ 0.003∗∗∗ 0.011∗

(0.001) (0.0005) (0.006)
Effective spread 0.201∗∗∗ 0.162 0.142∗∗∗

(0.077) (0.107) (0.011)
Kyle’s Lambda 0.012∗∗∗ 0.007 0.019

(0.004) (0.006) (0.020)
Quoted spread −0.029 −0.065∗∗∗ −0.252∗∗∗

(0.030) (0.014) (0.034)
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Table 9. Negative return days

This table presents the results of the second stage of the 2-stage least square (2SLS) estimation adding the interaction term with dummy
variable r−. r− equals 1 for observations with negative returns, and 0 otherwise. The sample encompasses three cryptocurrencies
(Bitcoin, Ether, and Litecoin) traded on three crypto trading platforms (Coinbase, FTX, and Kraken) during the period from January
to June 2021. The dependent variable are the Kyle and Obizhaeva (2016) measure, percentage effective spread, Kyle’s Lambda, and
percentage quoted bid-ask spread. Confirmation time represents the fitted value obtained from the first stage regression, utilizing
blockchain mining rate as the instrument. Control variables include cryptocurrency return, volatility, and log trading volume. We
include trading venue-cryptocurrency fixed effect. Standard errors are clustered by trading venue-cryptocurrency and reported in
parentheses. Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Dependent variable:

Kyle and Obizhaeva Effective spread Kyle’s Lambda Quoted Spread

(1) (2) (3) (4)

Confirmation time 0.008∗∗∗ 0.161∗∗ 0.011∗∗ −0.088∗

(0.002) (0.065) (0.005) (0.048)
Confirmation time × r− 0.003 0.142 0.009 0.012

(0.002) (0.178) (0.010) (0.031)
r− −0.008 −0.906 −0.069 −0.028

(0.012) (1.712) (0.107) (0.308)
r 0.003∗ 0.084 0.007 0.066

(0.002) (0.099) (0.007) (0.056)
σ 0.037∗∗∗ 2.129∗∗∗ 0.145∗∗∗ 0.807∗

(0.014) (0.517) (0.044) (0.415)
log(volume) −0.194∗∗ 0.198 −0.210 −3.311

(0.088) (2.542) (0.205) (2.021)

Venue-crypto FEs Yes Yes Yes Yes
SE Clustering Yes Yes Yes Yes
Observations 1,620 1,620 1,620 1,620
R2 0.953 0.920 0.919 0.785
Adjusted R2 0.952 0.919 0.918 0.783
Durbin–Wu–Hausman (p-value) 0.007 0.000 0.001 0.051
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