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Abstract

I provide a theoretical framework that characterizes which option strike an informed
agent buys or sells after a given signal. The informed agent faces a trade-off between higher
exposure to the asset or a more favorable price for the option. In equilibrium, he implements
a mixed strategy across strikes to camouflage himself as a noise trader. However, he only
considers strikes within a segment of the strike line. This segment depends on the realization
of the private signal. As a result, there is a one-to-one mapping between the asset distribution
conditional on each possible signal realization and the price slope. Additionally, the model
suggests that market makers can make the information asymmetry losses of noise traders
independent of the private signal realization.
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Easley et al. (1998) provide a model that rationalizes why informed agents should trade on

the options market due to the intrinsic leverage of options. Their model characterizes the the

informed agent decision of trading the asset or an available option when the market maker sets

ask and bid prices in both markets endogenously. Nonetheless, their paper remains silent about

which strike an informed investor trades if multiple strikes exist. In this paper, I consider the

problem of an informed agent who has decided to trade in the options market and needs to

optimally select the strike. At the same time, market makers in the option market set prices

endogenously to cover the potential losses from adverse selection.

The model equilibrium presents three important features. First, informed agents use mixed

strategies to camouflage as noise traders if the number of available strikes is high. Second,

they trade completely different strikes after each signal realization. Consequently, the slope of

option prices in different points of the strike line elicits the posterior distribution of informed

agents after each signal realization. Third, multiple price levels sustain an equilibrium. Market

makers might decide to set prices such that noise traders will lose more after very strong signal

realizations or lose the same regardless of the private signal realization. This result suggests

that the level of option bid-ask spreads does not contain much information about information

asymmetries even if the slope does.

The model considers a call option market with many strikes à la Glosten and Milgrom (1985).

Each option has an ask and a bid price set by a competitive market maker. On the other side

of the transaction, nature selects whether the agent is informed or a noise trader. The latter

trades a strike randomly. The former receives an imperfect private signal about the final value of

the asset and decides whether to buy or sell and which strike. After observing the signal about

the asset value, the informed trader faces a trade-off. He would like to get a higher exposure to

the asset as in Easley et al. (1998) to obtain a higher benefit from his information. However, in

equilibrium, strikes that offer a high exposure also have less favorable prices because the market

maker internalizes that the order flow contains more information.

The optimal strategy for an informed agent consists of dividing the strike line into different

segments. He buys an option in the segment that provides the higher exposure after the most

positive signal. Nonetheless, within the segment, he plays mixed strategies and trades each

strike with a positive probability. The market maker anticipates this behavior and sets a higher
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spread than for other strikes.1 The informed agent buys a strike in the second segment with

the highest exposure after the second most positive signal and so on. There are no profitable

deviations because trading a strike with higher exposure is more expensive, while trading one

with a lower spread leads to lower exposure; hence, lower information gains.

The market maker is competitive; therefore, prices reflect the equilibrium strategy of in-

formed agents. I focus on the ask side of the book since both sides are symmetric. Since the

informed agent separates the strike line into segments and chooses the segment based on the

realization of the signal, prices also follow a segment structure. The informed agent trades the

strikes with the highest exposure only after the most positive signal; therefore, these strikes

have the highest spread to compensate for the adverse selection. Within the strike segment, not

every strike is the same. Low strikes provide more exposure to the asset. Consequently, they

are traded more by informed agents and the market maker sets wider spreads.

Contrary to most information models, market makers can have an active role. They can set

the price segments wider with a lower spread or narrower with a higher spread. In both cases,

they get zero profits. The difference is how much risk they eliminate from informed investors.

These investors face risk before the signal realization as this signal might be good, bad, very

good, very bad, etc. If the market maker selects a specific price function, any realization of the

private signal leads to the same profits for the informed investors; hence, they face no risk, and

the adverse selection cost is the same for each strike.

Regardless of the decision by the market maker, in equilibrium, the slope of the ask price

with respect to the strike within a given segment must make informed agents indifferent to

sustain a mix-strategy equilibrium. Therefore, the slope equals the loss due to a lower exposure,

which boils down to the derivative of a conditional expectation. Consequently, analogous to

Breeden and Litzenberger (1978), the slope of prices corresponds to a point of the cumulative

density function of the asset liquidation value conditional on the private signal realization after

which informed agents trade that segment. Since we have several strikes per segment, we can

recover the conditional density after each signal for a wide range of distributions. This result

arises from the risk neutrality of the informed investor and a high number of strikes.

This paper is the first to consider the optimal choice of the strike by informed investors and

1I define spread as the absolute difference between quoted price and the unconditional value.
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endogenous prices at the same time. Augustin et al. (2023) considers the selection of strikes but

disregards the change in prices due to the presence of informed investors. In contrast, my model

focuses on characterizing the price function to elicit the possible information held by informed

agents.

This paper also contributes to the literature that links option volume to future stock returns.

The more popular measure to predict stock returns is the put-call ratio; that is, the put total

volume over the call total volume. Pan and Poteshman (2006) show this measure outperforms

any other measure based on prices. Bondarenko and Murayev links this predictability to in-

sider trading by showing that the predictability dissipated after the SEC tightened the insider

regulation following the arrest of Raj Rajaratnam. My paper adds the strike dimension to the

problem. My model predicts that in-the-money volume leads to more extreme price changes

than out-of-the-money volume. Nonetheless, it is silent about average predictability because it

depends on the likelihood of each signal.

My model provides the theoretical result to elicit the distribution of private information. This

distribution constitutes one of the main ingredients in learning models. For instance, Easley

et al. (1996) considers a model in which the informed agent knows the asset with certainty.

Then, informed agents trade according to their signal, and the market maker learns quickly.

Cipriani and Guarino (2008) modify the model by considering an imperfect private signal with

a particular distribution. This small modification leads to herding times during which informed

agents disregard their own signal and follow publicly observed trades. My model provides a

framework to differentiate empirically both models. If private information is almost certain,

in-the-money options will present a steep slope. Instead, if private information is very noisy

as Cipriani and Guarino (2008)’s calibration suggests, the slope should be flatter and almost

constant across strikes.

Finally, my model adds to the vast literature that measures information asymmetries in

different markets (See Ahern, 2020, for an evaluation of these metrics). Most of this literature

focuses on measuring the average adverse selection cost in equities or bonds. My results provide

guidance on how to extend these measures beyond the average adverse selection cost. For

instance, investors might be willing to lose 0.1% of their investment with 50% probability and 0

otherwise; however, they might not accept losing 1% with 5% probability. The main insight of
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the model is that steep in-the-money option prices indicate the second case is more likely than

the first one. Likewise, eliciting all the possible posteriors of informed agents allows market

makers to set up spreads in related markets (e.g. CDS).

1 Stylized Model

In this section, I present a stylized model that captures the main insights and allows me to

illustrate the equilibrium. The following sections discuss why the main results hold in more

general set-ups.

Assets. There is an asset whose value at time T , θ, might be θU with probability α0 or θL

with probability 1 − α0. This asset is not directly traded but there are N different European

call options written on the asset.2 All of them expire at T . Options differ on their strikes, which

range from KL to KU , such that θL ≤ KL < KU ≤ θU . For simplicity, and in line with usual

markets, I consider equally-spaced strikes: Kn = KL + n−1
N−1(KU −KL) n ≤ N n ∈ N.

Players. There is market maker who sets prices competitively. Analogous to Glosten and

Milgrom (1985) model, there is a mass δ of risk-neutral informed agents who observe a signal s

about the value at maturity and can buy or sell a single call option. The novelty is that they

decide the strike. Despite the presence of informed agents, trade occurs because there is a mass

1 − δ of noise traders who buy and sell call options with probability ε and 1 − ε, respectively;

and they select each strike with equal probability. To make the exposition clearer, I refer to the

market maker as she and to an informed or noise trader as he.

Timing and strategies. Since this paper focuses on characterizing the spread across strikes,

I consider a static model and assume a zero discount rate. At the beginning of the period, market

makers submit limit orders to form the ask, A(k), and bid, B(k), of each option. Then, a random

trader enters the market and trades. If this agent is an informed agent, he decides to buy or

to sell, and chooses the strike. I allow mixed strategies; therefore, his strategies are defined in

terms of probabilities pinned down in equilibrium. In particular, he buys (sells) a call with strike

k with probability q(k, s) (p(k, s)).

Private Signal. After observing the signal s ∈ S = {s1, . . . , sM} (1 < M < N), the

informed agent posterior probability of the highest state is αs. These signals reflect different

2Easley et al. (1998) discuss the trade-off between trading the asset or an option.
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information acquisition processes such as knowledge from being an executive in the firm to

a competitive advantage in reading accounting information; as well as different outcomes of

these processes. Consider the case of an accounting expert who finds accounting fraud with

probability one; if she finds fraud, the information gain becomes extreme; however, if she does

not the information gain is minimal. This two outcomes, fraud/not fraud would constitute two

different signals. The objective is to recover the posterior after those signals, but we cannot

recover the nature of those; hence, I follow a general notation for the signals. Precisely, I assume

αs > αt ⇐⇒ s > t, and αs > α0 ⇐⇒ s > 0 without loss of generality. Finally, I denote as

g(s) the probability mass function of the signals.

In order to avoid discussing corner cases, I assume that informed traders are for sure informed

(s 6= 0 ∀s). Although Easley and O’hara (1987) show that relaxing this assumption leads to

interesting learning patterns and Easley et al. (1996) proves its relevance to describe the empirical

probability of informed trading, the aim of this model is to provide a characterization of the

cross-section of strikes; hence, the time dimension, thus learning, plays a minor role. Actually,

in this model, adding uninformative signals is isomorphic to increase the proportion of noise

traders.3

Extra notation. I denote as Inf the fact that an informed is selected from the pool of

traders, and as dk = 1 (dk = −1) the fact that someone buys (sells) an option with strike k from

the market maker. Despite entailing extra notation, I use ∆K to refer to the difference between

two consecutive strikes (∆K = KU−KL
N ) and the set of all strikes K. I denote the equilibrium

functions with an asterisk. To save space I refer to the call payout max{θ−K, 0} as (θ−K)+.

Equilibrium. Similar to Glosten and Milgrom (1985) and Easley and O’hara (1987), I

define an equilibrium in this model as a set of functions {q∗(k, s), p∗(k, s), A∗(k), B∗(k)} such

that:

1. The market maker makes zero profits from each strike: πA(A∗(k), k) = 0, πB(B∗(k), k) =

0, where πA and πB denote the expected profits of the market maker from strike k on the

ask and bid side respectively:

πA(A(k), k) = A(k)−E((θ−k)+|dk = 1) πB(B(k), k) = E((θ−k)+|dk = −1)−B(k) ∀k ∈ K

3This assertion follows from assuming that informed agents when they do not receive a signal trade randomly
mimicking noise traders as in Easley and O’hara (1987), Easley et al. (1996), and Cipriani and Guarino (2014).
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2. The informed agent maximizes profits:

{q∗(k, s), p∗(k, s)} = arg max
q,p

Π(q, p, s)∀s ∈ S, k ∈ K.

subject to

KN∑
k=KL

p(k, s) + q(k, s) ≤ 1 ∀s and q(k, s) ≥ 0, p(k, s) ≥ 0

Π(q, p, s) =

KN∑
k=KL

q(k, s)

(
E
(
(θ−k)+|s

)
−A∗(k)

)
+

KN∑
k=KL

p(k, s)

(
B∗(k)−

(
E
(
(θ−k)+|s

))
3. Informed investors participate after each signal:

Π(q, p, s) > 0

Condition 1 represent the perfect competition of market makers in reduced form. Avoid-

ing to explicitly model competition among market makers simplifies the model as the market

maker becomes a passive player. Hence, it is enough to characterize the equilibrium strategy of

informed investors at equilibrium prices, which reduces the dimensionality of the functions q(·)

and p(·). Since there is a one-to-one mapping from strikes to (equilibrium) prices, I omit prices

as arguments of the informed agent’s strategies. Condition 2 borrows the informed agent’s profit

function from the seminal papers and aggregates those profits across strikes.

Condition 3 trivially holds, even out of equilibrium, in any paper with risk-neutral agents

and binary state and signal space. Extending the signal space might result in some signals after

which the informed investor does not find optimal to trade and leaves the market. However, since

they do not participate, they do not affect prices. Hence, I focus the model on full participation

and the posterior distributions (αs) should be interpreted as those of participating investors.

1.1 Road to equilibrium

The complexity of this model resides in its flexibility. By allowing several strikes and signals,

the equilibrium consists of several functions. Therefore, to obtain the equilibrium, we first need

to reduce the possible functions. I do so through a sequence of lemmas that isolate each of the

main moving pieces of the model.

Lemma 1. Market side separation. Given a signal s, the informed agent either sells or buys

call options. Mathematically,

KU∑
k=KL

q∗(k, s) = 1 ∧ p∗(k, s) = 0 ∀k ∈ K or

KU∑
k=KL

p∗(k, s) = 1 ∧ q∗(k, s) = 0 ∀k ∈ K
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Lemma 1 indicates that there are some signals after which the informed agent always buys

while after others he sells or leaves the market without trading. Therefore, mixed strategies

in which informed agents buy some strikes and sell others cannot constitute an equilibrium.

This result eases significantly the problem as it allows us to solve for the equilibrium in the ask

and bid side of the market separately. This separation occurs in most seminal models, such as

Easley and O’hara (1987). Although in these cases, informed traders are either buyers or sellers

at every point in time, instead of at every strike. Similar to those models, this result arises from

the clear order of the signals implied by the binary distribution. If the posterior probability of

the upper state is greater than α0, the expected value of buying any call option is higher than

the expected value of selling any of them.

Using Lemma 1 we can separate the informed agent decision in two steps. First, he decides

to buy (αs > α0) or sell. Then he chooses the strike. When taking this last decision he faces a

trade-off. On the one hand, lower strikes provide a higher exposure to the asset; hence, a higher

expected payoff. On the other hand, in equilibrium, the market maker understands that lower

prices entail higher adverse selection costs and increases the spread for those call options.

Lemma 2. No gaps. In equilibrium, if the informed agent trades strike k′ with positive prob-

ability, he trades any strike k < k′ with positive probability. Mathematically,

∃s ∈ S s.t. q∗(k′, s) > 0⇒ ∃s′ ∈ S s.t. q∗(k, s′) > 0 ∀k < k′ k, k′ ∈ K

∃s ∈ S s.t. p∗(k′, s) > 0⇒ ∃s′ ∈ S s.t. p∗(k, s′) > 0 ∀k < k′ k, k′ ∈ K

Lemma 2 formalizes a clear implication of the previous trade-off: low strikes are always

traded by informed traders. Consider a potential equilibrium in which informed traders do

not buy strike k′ then, the ask price equals the unconditional value due to competition. This

price constitutes a great opportunity for informed agents, who might deviate and earn higher

rents. If, in this potential equilibrium, they trade a higher strike, they would deviate for sure;

hence it is not an equilibrium. However, if they trade a lower strike, they might decide not to

deviate because the benefit of a higher exposure to the asset offsets the benefit of a lower price.

Therefore, this model might provide options with no spread in equilibrium, but these options

will be those with highest strikes.
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Corollary 1. Underlying. In equilibrium, informed agents always trade the lowest strike.

Mathematically,

∃s ∈ S s.t. q∗(KL, s) > 0 and ∃s ∈ S s.t. p∗(KL, s) > 0

Corollary 1 to Lemma 2 indicates that the lowest strike always carries adverse selection costs.

In the extreme case in which the asset is traded (KL = 0), the corollary implies the informed

agent trades the asset with positive probability. This result hinges on the signal being about

the level of the liquidation value and therefore arises in many previous models as Easley et al.

(1998).

Lemma 3. Signal order. In equilibrium, if informed agents trade strike k′ with positive proba-

bility after signal s′, they do not trade any higher strike after a stronger signal. Mathematically,

∃s′ s.t. q∗(k′, s′) > 0⇒ q∗(k, s) = 0 ∀k > k′, s > s′, k, k′ ∈ K, s, s′ ∈ S

∃s′ s.t. p∗(k′, s′) > 0⇒ p∗(k, s) = 0 ∀k > k′, s < s′, k, k′ ∈ K, s, s′ ∈ S

The benefit of a higher exposure to the asset depends on the information owned by the

informed trader. After a signal with a very high posterior expectation, the marginal benefit of

increasing the exposure is higher than after a signal which generates a posterior close to the

unconditional value. This mechanism constitutes the basis of Lemma 3 which sets an order for

the signals. It specifies that as the strike increases, the posterior expectation of the informed

agent who trades decreases. This result reduces significantly the set of potential equilibria and

makes the problem feasible.

Lemma 4. Signal separation. In equilibrium, if informed agents play mixed strategies across

some strikes after signal s, they do not play mixed strategies across those strikes after any other

signal. Mathematically,

∃s ∈ S s.t. q∗(k, s) ∈ (0, 1)⇒ @s′ ∈ S s.t. q∗(k, s′) ∈ (0, 1)

∃s ∈ S s.t. p∗(k, s) ∈ (0, 1)⇒ @s′ ∈ S s.t. p∗(k, s′) ∈ (0, 1)

The different marginal benefit of exposure according to the signal has important implications

for mixed strategy equilibria. In this type of equilibria, after a signal realization, the informed
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agent trades different strikes randomly, which allows the informed agent to camouflage as a noise

trader. An equilibrium of this type requires that after the signal, the informed agent obtains the

same profit across all the strikes at which he trades with a positive probability. Otherwise, he

would deviate and trade the strike that provides the highest profit with probability one. This

indifference condition generates a separation of strikes according to the signal. Therefore, in a

mixed strategy equilibria some strikes are traded by informed agents after one signal but not

after any other signal.

Lemma 5. Price slope. In equilibrium, if informed agents play mixed strategies across some

strikes, the slope of the price function of those strikes reveals the posterior probability. Mathe-

matically,

∃s s.t. q∗(k, s) ∈ (0, 1) and
k∑

i=KL

q∗(k, s) < 1⇒ αs = −A(k + ∆K)−A(k)

∆K

∃s s.t. p∗(k, s) ∈ (0, 1) and
k∑

i=KL

p∗(k, s) < 1⇒ αs = −B(k + ∆K)−B(k)

∆K

Since the informed trader only trades a particular strike after a specific signal, the market

maker knows for sure the posterior distribution of the informed agent if he trades. Therefore,

the separation of signals transfers to the pricing function. Lemma 5 states that the slope of the

pricing function provides us with enough information to recover the complete set of posterior

distributions with which informed traders might end up after the signal realization. Very steep

pricing functions indicate that informed traders own very precise information. Similarly, if the

bid pricing function is steeper than the ask pricing function, it implies that informed agents are

better informed about downward movements than about upward ones.

1.2 Equilibrium with a continuum of strikes

The previous lemmas hold for any number of strikes, but solving for the equilibrium in this

general case implies solving dozens of cases unless we restrict to very few strikes. However, in

the data, we observe a large number of strikes and, actually, most econometric methods exploit

the high number of strikes to make inference (see Figlewski, 2018, for a review). Therefore,

instead of restricting to few strikes, I solve the model in the limit when the number of strikes

tends to infinity.
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Lemma 6. Only mixed strategies. If ∆K → 0; then, only mixed strategies can constitute an

equilibrium. Mathematically, in the limit,

q∗(k, s) = lim
∆K→0

β(k, s)∆K

p∗(k, s) = lim
∆K→0

σ(k, s)∆K

and 0 < lim∆K→0 β(k, s) <∞ or β(k, s) = 0, and 0 < lim∆K→0 σ(k, s) <∞ or σ(k, s) = 0.

This last lemma ensures that, in the limit, informed agents mix across strikes regardless of

the signal. Otherwise, informed trading would result obvious to the market maker since the

probability of noise traders reduces to a differential. Note that, even in the nonlimiting case,

mixing helps the informed trader to disguise; however, this is at the expense of a lower exposure.

Hence, if some of the signals provides extreme information rents and the space between strikes

is high, the informed investor might decide to buy one strike with probability one. This is the

reason why Lemma 6 is unique to the limiting case although approximates the discrete case.

Lemma 6 also specifies that the informed agent trades with probabilities proportional to the

difference between strikes. If he trades any strike with a higher probability, the market maker

would set the spread to eliminate the adverse selection loss since the benefit obtained by noise

traders would be negligible. Instead, if the informed agent decides to mix across more strikes

and trade with intensity lower than proportional to ∆K, then some strikes would not be traded

in equilibrium and the informed agent would benefit from trading those strikes.

Since the equilibrium must be in mixed strategies, we can use the lemmas in the previous

section to depict the possible equilibrium. Lemma 4 implies that informed investors buy or sell

a given strike after one specific signal, which I denote as s∗k
4. Meanwhile, Lemma 2 and Lemma

3 ensure that all the strikes traded after a signal must be consecutive. Hence, equilibrium prices

consists of M different segments and the market maker faces stronger signals in the lowest-strike

segments. Lemma 5 characterizes the behavior of prices and the strategy of informed traders

in a possible equilibrium through a differential equation. Solving the differential equation, we

arrive to the following equilibrium response at the ask side:

β(k, s∗k) =
1

δg(s∗k)
(λ(s∗k)(θU − k)− PN) if s∗k > 0 and β(k, s) = 0 ∀s 6= s∗k (1)

4 There are two s∗k per strike, a negative and a positive one after which informed traders sell or buy the strike
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where λ(s∗k) is a positive constant, and where PN is a measure of noise trading:

PN =
(1− δ)ε

(KU −KL)
if s∗k > 0;PN =

(1− δ)(1− ε)
(KU −KL)

if s∗k < 0

The symmetric case holds for the bid side of the market:

σ(k, s∗k) =
1

δg(s∗k)
(λ(s∗k)(θU − k)− PN) if s∗k < 0 and β(k, s∗k) = 0 ∀s 6= s∗k (2)

Using these expressions, we can find the prices through the zero profit condition:

A∗(k) = αs∗k (θU − k)− PN

λ(s∗k)
(αs∗k − α0) if ∃s∗k > 0 s.t β(k, s∗k) > 0 (3)

and B∗(k) = αs∗k (θU − k) +
PN

λ(s∗k)
(α0 − αs∗k) if ∃s∗k < 0 s.t σ(k, s∗k) > 0 (4)

Consistent with the intuition that an informed trader wants exposure to the asset, he trades

more intensively call options with lower strikes. As a result, they totally offset the extra infor-

mation rents, and the market maker sets the same slope for all options within a segment. While

the slope does not depend on the mass of noise traders, the level of prices does, as we observe

in the first term of the second summand. In line with previous nonstrategic models, the mass of

noise traders interacts with the size of information rents. Therefore, for a given s∗k, the higher

the likelihood of informed trading, the lower the deviation of prices from the posterior mean

value, and this effect is amplified for extreme signals.

At this point, we know that any equilibrium includes prices with the same slope within a

segment and we know the intensity of informed trading except for its slope. Next, we need to

characterize the relative width of every segment. To do that, I introduce more notation and

denote as K(s∗k) and K(s∗k) the limits of the segment. Lemma 1 states that the law of total

probability constraint always binds in equilibrium. Hence, the width should be such that this

restriction binds:

K(s∗k)∫
K(s∗k)

β(k, s∗k)dk = 1, s∗k > 0 and

K(s∗k)∫
K(s∗k)

σ(k, s∗k)dk = 1, s∗k < 0

which implies that the upper strike is equal to:

K(s∗i ) =

(
θU −

PN

λ(s∗i )

)
−

√((
θU −

PN

λ(s∗i )

)
−K(s∗i )

)2

− 2
δg(s∗i )

λ(s∗i )
(5)
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According to Lemma 2, the upper strike of one segment and the lower strike of the subse-

quent segment coincide; moreover, Lemma 1 implies that the first segment starts at KL. As a

consequence, we have characterized the width of every segment as a function of λ(s∗k).

Any λ(s∗k) > 0 sustains an equilibrium. At the moment of setting prices, the market maker

has a trade-off for each signal. Let’s consider the highest possible signal; hence, the lowest-strike

segment. If the market maker chooses a high λ, the price level is higher but the intensity of

trade by informed agents is also higher. We might think informed agents would be worse off and

have a profitable deviation; however, this deviation does not happen because the segment width

reduces providing a higher profit if the second highest signal realizes. Given this trade-off, there

are many options for the market maker. To completely characterize the equilibrium, I introduce

a regularization.

Regularization 1. No risk. Market makers set prices to make losses by noise traders inde-

pendent of the private signal. Mathematically,

E((θU − k)+|s∗k)−A(k) = E((θU −KL)+|s∗KL
)−A(KL)

The regularization implies

λ(s∗k) =
αs∗k − α0

αs∗KL
− α0

λ(s∗KL
), s∗k > 0;

therefore, it characterizes the equilibrium except for λ(s∗KL
). Moreover, it provides a nice insight.

Market makers can set prices to eliminate the uncertainty about the private signal. In this

equilibrium, the informed agent does not care about receiving a very high or a high signal

because the profits are the same. If he receives a very high signal, he mixes across few strikes

but low ones. Instead, if the signal is lower, he mixes across many strikes camouflaging better.

At this point, we have characterize the intensity of trading such that informed agents op-

timize, and the corresponding prices for which the expected profit is zero, for those strikes

with positive informed trading. From Lemma 2, we know that they trade the lowest strikes;

hence if there are strikes with no informed trading must be those after the last segment (K >

K(sα) sα > 0 sα−1 < 0). Those strikes exist if the profit from lower strikes exceeds the profit

of trading the strikes with prices equal to the unconditional value:

E((θU − k)+|s∗k)−A(k) ≥ (αs∗k − α0)(θU − k′) ∀k′ ≥ K(sα) ⇐⇒ K(sα) ≥ θU −
PN

λ(sα)
.
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This expression just provides a region where the last traded strike might lie and a similar

expression holds for the bid side. Nonetheless, if we combine them with the nonnegativity

constraint of the trading intensity:

β(k, s∗k) > 0 ∀k < K(sα)⇒ K(sα) ≤ θU −
PN

λ(sα)
,

we obtain a unique last strike traded by informed agents. Hence, if there exists λ(s∗KL
) > 0 that

make Equation (5) hold and K(sα) = θU − PN
λ(s∗KL

) ≤ KU , we reached an equilibrium. Generally,

multiple λ(s∗KL
) > 0 will satisfy these conditions and the market maker can decide to face

information asymmetries in all strikes or leave some strikes without information asymmetries.

1.3 Graphical illustration

To provide some intuition about the model, I present in Figure 1 the ask price under different

set-ups. The baseline set-up considers 2
3 of the investors are informed, and the remaining 1

3 buy

and sell with equal probability. The asset might be valued 100 or 0 with the same probability(
1
2

)
and the market maker provides call options with strikes ranging from 30 to 70. I consider

a very simple information structure in which informed investors receive a positive signal with

probability 1
2 . Nonetheless, there are two possible positive signals: a very informative one that

leads to a certain posterior α2 = 1 with probability 0.4 and a noise one with posterior α1 = 0.55

and probability 0.6. Finally, I consider λ(KL) = 0.0006 5

Panel (a) plots the equilibrium ask price and the informed intensity (β(k, s∗k)) for all strikes

below 50. Due to the limited amount of signals, we can easily observe the distinction between

the different segments. There are three segments. The first segment is the one preferred after

the strong signal; hence, the market maker sets a very wide spread. Note that the payoff of the

call of strike 30 in the upper state is 70 but the unconditional payoff is 35. Therefore, the market

maker almost eliminates the information gain. The slope of this segment is very steep because

the information is very precise. The second segment corresponds to the noisy information. In

this case, the segment is much wider and, consequently, the intensity of informed trading is lower

and less steep because the informed agent can mix across many strikes. As a result, the adverse

selection faced by the market maker in one strike is low, leading to a lower spread. Finally, the

5The parametrization provides an example easy to visualize. More realistic parametrizations would provide
the same insights.
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informed agent will never trade an option with strike higher than 44.4 because it does not provide

enough cost saving compare to more in-the-money options that provide a higher exposure.

I change two of the main parameters in Panel (b). The dashed line consider the case in which

only half of the investors are informed. The decrease in informed investors reduces the incentive

to mix across strikes because the trades are less revealing. Consequently, informed investors

trade more aggressively reducing the width of the ask segments. The dotted line considers a

2% decrease in the highest payoff. Therefore, the information rents decrease and the benefit of

a higher exposure to the asset declines. Since informed investors trade off disguising as noise

traders and exposure to the asset, we observe more mixing; hence, wider segments. Additionally,

the price declines because the call option payoff is lower.

Panel (c) illustrates Lemma 5 because the slope of the price function does not depend

on any of the parameters. I plot the ask price under the baseline parametrization and two

alternative ones. The first alternative parametrization (crosses) considers two positive signals

with posterior probabilities 0.75 and 0.55 and the same unconditional mean as the baseline

distribution. Instead, the second parametrization (circles) considers two positive signals with the

same posterior distribution of the baseline case but in which the very informative signal realizes

with probability 0.2. Panel (c) shows that the baseline and the first alternative parametrization

can be differentiated in the data because the slope of the ask price is different. On the other hand,

the baseline and the second alternative parametrization might be observationally equivalent

unless we know the remaining parameters and the true model.

Finally, panel (d) considers the role of λ(KL). I set this parameter arbitrarily and a range of

possible values sustain an equilibrium. In panel (c), the parameter is common to all the signal

specifications. Instead, in panel (d), I set the parameter such that the strikes with adverse

selection are the same regardless of the information structure and equal to the maximum range

across specifications. The first alternative signal structure (crosses) presents the biggest change

because it had the most limited strike range. If λ(KL) lowers, the market maker accommodates

a wider range of strikes allowing the informed agent to mix across many strikes. The result is

a lower adverse selection per strike; hence a lower spread in those strikes that are traded by

the informed agents in the high λ(KL) case. However, a low λ(KL) implies that more strikes

have a positive spread. Noticeably, panel (d) illustrate the limit to identification. The baseline
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(solid line) and the second alternative signal structure (circles) lead to almost observationally

equivalent ask prices despite considering a different expected value conditional on the signal

being positive.

2 Extensions

The model disregards some important aspects of the market. For instance, assets do not have a

binary distribution. These simplifications allow me to characterize the equilibrium and illustrate

the mechanism at play. Nonetheless, the insights of the model are more general. In the following

sections, I discuss different extensions of the model using the lemmas in Section 1.1.

2.1 Beyond the binary distribution

The equilibrium strategies can be described succinctly and in close form only in the case of a

continuum of strikes and a binary asset value distribution. However, while maintaining the case

of the continuum of strikes, we can generalize the asset distribution and still obtain most of the

previous results. To do that, I introduce an assumption about the ordering of the signals.

Assumption 1. General asset distribution. Signals can be ordered according to first-order

stochastic dominance. Mathematically,

s > s′ ⇒ F (θ|s) < F (θ|s′) ∀s, s′ ∈ S ∪ ∅

where F (·|s) is the cumulative distribution function of the asset value conditional on the realiza-

tion s of the private signal.

The binary distribution is the simplest case that satisfies the above assumptions but there

are many other common cases. For instance, if the informed investor holds a Gaussian prior

before observing the signal realization, and the signal and asset value form a joint Gaussian

distribution; then, the posterior distribution of the asset satisfies the assumptions above.

Assumption 1 ensure that Lemmas 1 to 6 hold. Nonetheless, I presented Lemma 5 using the

binary specification so I reformulate it using any distribution.

Lemma 7. Price slope. In equilibrium, if informed agents play mixed strategies across some

strikes, the slope of the price function of those strikes reveals the posterior probability. Mathe-
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matically,

∃s s.t. q∗(k, s) ∈ (0, 1)⇒ 1− F (k|s) = −dA(k)

dk

∃s s.t. p∗(k, s) ∈ (0, 1)⇒ 1− F (k|s) = −dB(k)

dk

In the binary case, the left-hand side remains constant across strikes. Instead, in the general

case it varies across strikes because for each strike within a segment, we recover a different part

of the conditional distribution function. This result allows us to elicit conditional distributions

with several parameters; e.g. Gaussian distributions.

2.2 The role of non-uniform noise trading

Bryzgalova et al. (2023) and Bogousslavsky and Muravyev (2024) show that retail investors

do not trade uniformly across strikes. They tend to trade at-the-money and slightly out-of-the-

money options. This evidence is consistent with Admati and Pfleiderer (1988). They endogenize

the participation of liquidity traders in the equity market and show they optimally choose to

concentrate their trading in time. Consequently, the assumption of uniform trading by noise

traders is likely violated. The model can be easily extended to capture this pattern.

Consider noise traders buy with probability ε and sell with the complement probability as

they do in the baseline model. However, conditional on buying an option, the probability of

buying a strike k is h+(k). Similarly, those who sell choose the strike according to the probability

h−(k). If noise traders do not trade a strike, no one will. Therefore, I impose that there is always

a possibility of a trade by a noise trader (h+(k) > 0, h−(k) > 0 ∀ k). I also impose that noise

traders must trade one strike

(
KU∫
KL

h+(k)dk =
KU∫
KL

h−(k)dk = 1

)
.

This new set-up provide the same results as the baseline. Lemma 1 holds because it depends

on whether noise traders are buyers or sellers, which remains unaltered. Lemma 2 and 3 hinge

on the decreasing information advantage with respect to the strike, which also holds in the

extended model. Lemmas 4 and 5 hold because the marginal gain of increasing the strike is

different across signals and the same within a signal. The distribution of noise traders across all

strikes generates incentives to mix; hence Lemma 6 holds.

The difference between the extended and the baseline model lies on the informed intensity to

trade. Similar to the effect of PN in the baseline specification, the informed investor will trade

more aggressively strikes with higher noise trading probability up to the point that the marginal
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benefit across all strikes traded after the same signal is the same. This result is consistent with

Admati and Pfleiderer (1988) and suggests that the informed investor aligns with noise traders;

hence, the market maker inventory is more uniform than the noise traders demand.

2.3 The role of inventory management

In the stylized model, the market maker is competitive and makes zero profit. This assumption is

common to most information models and complex to relax6. Yet, inventory matters, specially in

option prices. Muravyev (2016) shows that two thirds of the price impact is due to inventory and

information asymmetries drive the remaining. In this section, I relax the perfect competitive

assumption of market makers in terms of expected gain and allow compensation for holding

positions and discuss the implications through the lenses of the model.

Consider the market maker instead of requiring zero expected profits to trade strike k in

the direction dk, she requires a compensation equal to akdk + γ(k)|dk|. I assume γ(k) ≥ 0 ∀k.

We can map this compensation to Ho and Stoll (1981) seminal paper. ak corresponds to the

shifts in prices due to outstanding inventory. If market makers own a positive delta position,

they might decide to decrease the bid and ask, even losing money with the trades on one side

(ak < 0) to avoid building more inventory. γ(k) through the lenses of Ho and Stoll (1981) equals

the risk aversion of market makers times the variance of owning a position in strike k. This

modeling choice has the advantage to also map to transaction costs, outside options different per

strike, etc. Nonetheless, it approximate an inventory model but it does not directly corresponds

to one. The missing mechanism is the reduction in the cost of holding inventory when the

market maker learns from the trade; hence reduces the conditional variance. This interaction

between inventory and information models generate significant mathematical complexity and it

is unlikely to be of first-order importance.

If ak = 0 and γk = γ, Lemmas 1-6 hold.7. Therefore, if market makers are close to the optimal

inventory and every option has a similar effect on their inventory, all insights hold. Instead, if γk

varies across strikes, Lemmas 2 and 3 might not hold although the other lemmas hold. Lemma

1 follows from the original Ho and Stoll (1981): inventory concerns adds a positive component

to the spread to compensate the market maker. Lemmas 4, 5 and 6 rely on the incentives

6Ying (2020) merges information and inventory models by assuming the latter consume at a lower frequency.
7Proofs are identical substituting the ask price A(k) by the net ask price A(k) − γ
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of informed agents to use mixed strategy equilibria to disguise within noise traders. These

incentives remain unchanged. The result might seem counterintuitive because market makers

may favor some strikes more than others modifying the price slopes. Instead, the informed agent

internalizes this change and trades with a higher likelihood lower strikes, increasing adverse

selection, and restoring the slope in prices.

When market makers are far away from the optimal inventory (∃ k s.t. ak >> 0), no lemma

will hold unless we introduce significant structure in the market maker problem. In this case,

an information model as the one I propose is not suited since informed agents might disregard

their information and just trade the strike “on sale” due to inventory.

2.4 The role of leverage

Previous literature points to leverage as the driver of the choice between stocks and options

(Easley et al., 1998, see, for example). Conditional on transacting on options, the consequences

of leverage are smaller. For instance, consider a stock trades at 191 and some investors know

it will trade at 200 at option maturity.8. If they hold 400 dollars to invest, they can buy two

shares and earn 18 dollars in profits. Instead, they can buy one option contract with strike 187.5

traded at 400 dollars, and earn 1250 dollars. An alternative would be to trade an out-of-the

money option and buy 1538 contracts with strike 197.5, resulting in a profit of 3845. These

back-of-the-envelop calculations exemplify how options provide huge leverage in comparison to

stocks (100x) but the difference between in- and at-the money options is small (2.5x). In this

section, I discuss whether the main conclusions from the stylized model hold if we account for

leverage.

To incorporate leverage to the model, I consider investors can trade h(k) units of the option

with strike k. In this case, if h(k) is very high for out-of-the-money options, informed investors

will trade those options after the strongest signals (Lemmas 2 and 3 might not hold). Nonethe-

less, they still have the incentive to mix across similar strikes; therefore, Lemma 6 remains

valid. Likewise, the traded quantity cannot depend on the signal which mantains the validity

of Lemma 4. Altogether, informed investors trade with certain probabilities across strikes but

they only trade a given strike after one specific signal. The difference with the baseline case is

that they might trade high-strike options after the strongest signals.

8 Data for Apple on May 20,2024 and maturity May 31,2021
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Consider informed investors follow a strategy similar to the baseline case in which they trade

within a segment after one signal but not the others. Then, the condition for an equilibrium in

mixed strategies is that they are indifferent between strikes within the same segment:

d

dk
h(k)

(
E
[
(θ − k)+ |s

]
−A(k)

)
= 0

Rearranging and following the same proof as in the baseline model:

−dA(k)

dk
= (1− F (k|s))

(
1 +

dh

k

E [(θ − k)+|s]−A(k)

h(k)

)
In this case, there is an extra term that captures the benefit for informed agents to trade a

strike that allows a higher quantity of contracts. If we know the function h(k), we can elicit the

possible posterior distributions of the informed agent from the slope and level of ask prices.

3 Conclusion

This paper provides a stylized model that characterizes informed trading in the option markets.

If informed investors have a continuum of strikes available, they use mixed strategies to cam-

ouflage as noise traders. However, they do not mix across all strikes because they would lose

exposure to the asset. Instead, they mix within a segment of the strike line. This segment is

determined by the realization of the private signal. In particular, different realizations of the

signal lead to non-overlapping segments within which they trade.

This behavior by informed agents results in a very particular price function. First, different

segments of the strike line have different spread levels and different slopes with respect to the

strike. Second, the slope of each segment corresponds to a section of the cumulative distribution

function of the asset realization conditional on a private signal realization. Third, the signal

after which informed agents trade a given segment is the conditioning set that defines the slope.

Altogether, my model provides the theoretical foundation to estimate the possible posterior

probabilities of informed agents trading in the options market.
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A Figures

(a) Ask price vs informed intensity (b) Effect of parameters

(c) Different signal structure (d) Fixed strike range for informed

Figure 1: Model graphical illustration
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B Auxiliary lemmas

I start by proving some lemmas that will be useful in the remaining proofs. These lemmas consider the
stylized model with the generalized asset distribution.

The first lemma shows that first-order stochastic dominance is a sufficient condition for ordering
signals in terms of expected payoffs regardless of the strike.

Lemma 8. Signals are ordered in terms of call payouts.

∃k′ s.t. E
(
(θ− k′)+|s

)
−E

(
(θ− k′)+

∣∣s̃) > 0⇒ E
(
(θ− k)+|s

)
−E

(
(θ− k)+|s̃

)
> 0 ∀k ∈ K; ∀s 6= s̃ ∈ S ∪∅

Proof. For any s ∈ S ∪ ∅,using integration by parts, we can write the conditional expectation as:

E
(
(θ − k)+|s

)
= limθ→∞θF (θ|s)− k −

θ̄∫
k

F (θ|s)dθ

Therefore:

E
(
(θ − k)+|s

)
− E

(
(θ − k)+

∣∣s̃) =

θ̄∫
k

(
F (θ|s̃)− F (θ|s)

)
dθ

First order stochastic dominance (first implication below) ensures that if the difference is positive for one
strike, it is positive for all other strikes.

E
(
(θ − k′)+|s

)
− E

(
(θ − k′)+

∣∣s̃) > 0⇒ F (θ|s̃) > F (θ|s) ∀θ ⇒ E
(
(θ − k)+|s

)
− E

(
(θ − k)+

∣∣s̃) > 0 ∀k

Actually, the lemma provides the difference between the expected payoff of the same option after two
different signal. As a corollary, I prove that information advantage decreases with the strike.

Corollary 2. Information advantage decreases with strike

E
(
(θ − k′)+|s

)
− E

(
(θ − k′)+

∣∣s̃) > E
(
(θ − k)+|s

)
− E

(
(θ − k)+

∣∣s̃) ∀k > k′ |s| > |s̃|; ∀s 6= s̃ ∈ S ∪ ∅

The next lemma proves the intuitive result that informed agents buy options whose expected payoff
according to the signal is above the ask price.

Lemma 9. Informed traders buy undervalued assets and sell overvalued ones.

q∗(k, s) > 0⇒ E
(
(θ − k)+|s

)
−A∗(k) ≥ 0 (6)

p∗(k, s) > 0⇒ B∗(k)− E
(
(θ − k)+|s

)
≥ 0 (7)

Proof. Consider the profit function:

Π ≡
KU∑
k=KL

κ(k)q(k, s)

(
E
(
(θ − k)+|s

)
−A∗(k)

)
+

KU∑
k=KL

κ(k)p(k, s)

(
B∗(k)−

(
E
(
(θ − k)+|s

))
(8)

subject to the law of total probability and nonnegativity constraints. Due to the linearity of the problem,
one of the restrictions will always bind so

∑KU

k=KL
q(k, s) = 1 ∨ q∗(k, s) = 0 ∀k and the same holds for

p∗(k, s). From this linear problem, we clearly see the implication of the lemma as otherwise, the informed
agent can set to 0 the p or q for which the right-hand implication is not true and increase his profits.

A common result in models of private information in financial markets is the presence of a positive
spread. Next lemma shows that this result holds in my model for every option.
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Lemma 10. There is a spread around the unconditional value.

A∗(k) ≥ E((θ − k)+) ≥ B∗(k)

and the first (second) inequality is strict for strike k if there exists a signal s such that q∗(k, s) > 0
(p∗(k, s) > 0).

Proof. Let’s start by proving A∗(k) ≥ E((θ − k)+) in equilibrium. The per unit profits for the market
maker are given by:

πA(A∗(k), k) = A(k)− E((θ − k)+|dk = 1)

= A(k)−
sM∑
s1

E((θ − k)+|s)q(k, s)P (Inf |dk = 1)− E((θ − k)+)(1− P (Inf |dk = 1))

= −
sM∑
s1

[
E((θ − k)+|s)−A∗(k)

]
P (Inf, s|dk = 1)−

[
E((θ − k)+)−A∗(k)

]
(1− P (Inf, s|dk = 1))

Note that P (Inf, s|dk = 1) depends on q(k, s). Using Bayes:

P (Inf, s|dk = 1) =

∑sM
s1

q∗(k, s)g(s)δ

P (dk = 1)

Therefore we have two cases. First, if q(k, s) = 0; hence P (Inf, s|dk = 1) = 0

πA(A∗(k), k) = 0⇒ E((θ − k)+)−A∗(k)) = 0⇒ A∗(k) = E((θ − k)+)

Second, if q(k, s) > 0, we know from Lemma 9 that E((θ − k)+|s)−A∗(k) > 0; therefore,

πA(A∗(k), k) = 0⇒ E((θ − k)+)−A∗(k) < 0⇒ A∗(k) > E((θ − k)+)

C Proofs of the lemmas of the stylized model

I prove Lemmas 1 to 6 of the stylized model using the general asset distribution to reduce the number of
proofs.

C.1 Lemma 1

Note that Lemmas 9 and 10 imply:

q∗(k, s) > 0⇒
L9

E
(

(θ − k)
+ |s
)
> A(k) >

L10
B(k)⇒

L9
p∗(k, s) = 0

In words, if the informed buys some option with positive probability, it does not sell the same option.
Lemma 1 is more general because it requires that buying an option with positive probability implies that
the informed agent does not sell any other option. Nonetheless, the general proof is similar but we require
Lemma 8:

q∗(k, s) > 0⇒
L9

E
(

(θ − k)
+ |s
)
> A(k) >

L10
E
(

(θ − k)
+
)
⇒
L8

E
(

(θ − k′)+ |s
)
> E

(
(θ − k′)+

)
∀k′

E
(

(θ − k′)+ |s
)
> E

(
(θ − k′)+

)
∀k′ ⇒

L9,10
p∗(k′, s) = 0 ∀k′

For the last implication, note that Lemma 10 implies E
(

(θ − k′)+
)
≥ B(k′). The equality case implies

p∗(k′, s) = 0 directly. In the strict inequality case, Lemma 9 implies the result.
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C.2 Lemma 2

Let’s prove this lemma by contradiction assuming there is an equilibrium such that q∗(k′, s′) > 0 and q∗(k, s) =
0∀s k < k′. I focus on the ask side but the proof for the bid side is symmetric. By the first equilibrium
condition and Lemma 10, we know:

A(k) = E((θ − k)+|dk = 1) = E((θ − k)+) and A(k′) > E((θ − k′)+)

since only noise traders trade at strike k but there is informed trading at k′. To arrive a contradiction,
we just need to find a strategy of the informed agent that provides higher profits than the one assumed.
Let consider an alternative q̂(k, s) in which q̂(k, s′) = q∗(k′, s′), q̂(k′, s′) = 0, and q̂(k, s) = q∗(k, s) for
every other k, s. For completeness, consider p̂(k, s) = p∗(k, s). Let denote the profits that the informed

agent obtains from this new strategy as Π̂(s′) and from the assumed one as Π(s′). Then, we have:

Π̂(s′)−Π(s′) = q∗(k′, s′)

((
E
(
(θ − k)+|s′

)
−A(k)

)
−
(
E
(
(θ − k′)+|s′

)
−A(k′)

))
> q∗(k′, s′)

((
E
(
(θ − k)+|s′

)
− E((θ − k)+)

)
−
(
E
(
(θ − k′)+|s′

)
− E((θ − k′)+)

))
>
C2

0

which is a contradiction.

C.3 Lemma 3

I prove Lemma 3 by contradiction, similar to the previous lemma. Assume q∗(k′, s′) > 0 and ∃k′′, s′′ s.t. q∗(k′′, s′′) >
0, k′′ > k′, s′′ > s′. I consider an alternative strategy such that q̂(k′, s′′) = q∗(k′, s′′) + q∗(k′′, s′′) and
q̂(k′′, s′′) = 0. The remaining part of the strategy remains unchanged. Importantly, I maintain the
assumption that q∗(k′, s′) > 0. Let denote the profits that the informed agent obtains from this new

strategy as Π̂ and from the assumed one as Π. Then, we have:

Π̂−Π = q∗(k′′, s′′)

((
E
(
(θ − k′)+|s′′

)
−A(k′)

)
−
(
E
(
(θ − k′′)+|s′′

)
−A(k′′)

))

Note that q∗(k′, s′) > 0 implies:

E
(
(θ − k′)+|s′

)
−A(k′) ≥ E

(
(θ − k′′)+|s′

)
−A(k′′)

⇒ A(k′′)−A(k′) > E
(
(θ − k′′)+|s′

)
− E

(
(θ − k′)+|s′

)
(9)

as otherwise we can decrease q∗(k′, s′) and increase q∗(k′′, s′) and earn a higher profit as we did in the
proof of Lemma 2. Corollary ?? implies:

E
(
(θ − k′)+|s′′

)
− E

(
(θ − k′)+|s′

)
> E

(
(θ − k′′)+|s′′

)
− E

(
(θ − k′′)+|s′

)
⇒ E

(
(θ − k′′)+|s′

)
− E

(
(θ − k′)+|s′

)
> E

(
(θ − k′′)+|s′′

)
− E

(
(θ − k′)+|s′′

)
Hence, using (9)

A(k′′)−A(k′) > E
(
(θ − k′′)+|s′′

)
− E

(
(θ − k′)+|s′′

)
⇒ E

(
(θ − k′)+|s′′

)
−A(k′) > E

(
(θ − k′′)+|s′′

)
−A(k′′)

Therefore, Π̂−Π > 0 and we arrived to a contradiction. The proof for the bid side is symmetric.
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C.4 Lemma 4

Note that q∗(k, s) > 0 ∧ q∗(k′, s) > 0 s.t. k 6= k′ ⇒ E
(
(θ − k)+|s

)
− A∗(k) = E

(
(θ − k′)+|s

)
− A∗(k′) as

otherwise the strategy does not maximize the informed agent profits. Rearranging we get:

E
(
(θ − k)+|s

)
− E

(
(θ − k′)+|s

)
= A∗(k)−A∗(k′)

The right-hand side is set by the market maker; therefore, it cannot depend on the realized value of
the signal. On the other hand, Corollary 2 shows that the left-hand change monotonically with the
signal. Therefore, there exist at most one signal realization after which this expression holds. Note that
p∗(k, s) > 0∧p∗(k′, s) > 0 has the same implication; thus, the proof applies to the bid side of the market.

C.5 Lemma 5

First, note that Lemma 2, Lemma 3, and Lemma 1 ensure that q∗(k, s) ∈ (0, 1) and
∑k
i=K1

q∗(k, s) <
1⇒ q∗(k + ∆K, s) ∈ (0, 1). Hence, using the last result from the indifference condition, we know::

E
(
(θ − (k + ∆K))+|s

)
− E

(
(θ − k)+|s

)
= A(k + ∆K)−A(k)

k+∆K∫
k

(θ − k)dF (θ|s) +

θ∫
k+∆K

∆KdF (θ|s) = −A(k + ∆K)−A(k)

where F (θ|s) is the c.d.f. of the asset given signal s. Integrating by parts,

∆K −
k+∆K∫
k

F (θ|s)dθ = −(A(k + ∆K)−A(k))

⇒ 1− 1

∆K

k+∆K∫
k

F (θ|s)dθ = −A(k + ∆K)−A(k)

∆K

Using the binary specification, F (θ|s) = 1− αs, we get the desired result.

Corollary 3. The limiting case of Lemma 5.
It is convenient to consider the limiting case when ∆K → 0.

Proof. We can then use L’Hôpital’s rule to get:

1− F (k|s) = −dA(k)

dk

C.6 Lemma 6

We want to prove that
q∗(k, s) > 0⇒ limN→∞Nq

∗(k, s) = β(k, s) <∞

Proof. The conditional probability of being informed:

P (Inf |dk = 1) =
δ
∑sM
s1

q∗(k, s)g(s)

δ
∑sM
s1

q∗(k, s)g(s) + (1− δ)ε 1
N

Using Lemma 6 and q∗(k, s) > 0, we can simplify the expression to:

P (Inf |dk = 1) =
δq∗(k, s)g(s)

δq∗(k, s)g(s) + (1− δ)ε 1
N
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Multiplying numerator and denominator by the number of strikes:

P (Inf |dk = 1) =
Nδq∗(k, s)g(s)

Nδq∗(k, s)g(s) + (1− δ)ε

We have three cases:

1. q∗(k, s) = o(N)⇒ limN→∞ P (Inf |dk = 1) = 0

2. q∗(k, s) > O(N)⇒ limN→∞ P (Inf |dk = 1) = 1

3. limN→∞Nq
∗(k, s) = β(k, s) <∞⇒ P (Inf |dk = 1) ∈ (0, 1)

I show that the first two cannot sustain an equilibrium. In the first case, the ask price of the call is
limN→∞A(k) = E((θ − k)+). Then, for any signal with E((θ − k)+|s) > α, the informed agent can
obtain a higher profit by increasing q∗(k, s). Therefore q∗(k, s) cannot be an equilibrium unless the total
probability restriction binds. The following proves it does not:

limN→∞

KN∑
k=K1

q∗(k, s) = lim
N→∞

N−1∑
n=0

q∗
(
K1 +

n

N
(KN −K1), s

)
≤ lim
N→∞

N max
k

q∗(k, s) = 0 (10)

In the second case, the ask price of the call is limN→∞A(k) = E((θ− k)+|s) and the informed agent
will make zero profits. Hence, he will increase the profits by trading any of the strikes with in which
Pr(Inf |dk = 1) = 0. We can prove that these strikes exists by contradiction.

Assume ∃s s.t. limN→∞Nq
∗(k, s) =∞∀k, then the total probability of trading after any signal s is

limN→∞
KN∑
K0

q∗(k, s) ≥ limN→∞
sM∑
s=s1

N min
k
q∗(k, s) =∞ which leads to a contradiction since q∗(k, s) is a

probability and must be lower than 1.

D Equilibrium derivations

Let’s denote s∗k the signal after which the informed investor buys strike k. Note that Lemma 4 ensures
that s∗k (if exists) is unique. we start by characterizing the intensity of informed trading per strike. Hence,
we consider only strikes traded after some signal s.

The first equilibrium condition (perfect competition) leads to:

A(k) = E((θ − k)+|s∗)P (Inf |dk = 1) + E((θ − k)+)P (Inf |dk = 1)

A(k) = E((θ − k)+|s∗) +

(
E((θ − k)+)− E((θ − k)∗|s∗)

)
P (Inf |dk = 1) (11)

Taking derivatives:

dA(k)

dk
=
dE((θ − k)+|s∗)

dk
+

d

(
E((θ − k)+)− E((θ − k)+|s∗)

)
P (Inf |dk = 1)

dk

Corollary 3 implies
dA(k)

dk
= F (k|s∗)− 1. Moreover, using Leibniz’s rule:

dE((θ − k)+|s∗)
dk

= F (k|s∗)− 1

Therefore,

d

(
E((θ − k)+)− E((θ − k)+|s∗)

)
P (Inf |dk = 1)

dk
= 0
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⇒
d

(
E((θ − k)+|s∗)− E((θ − k)+)

)
dk

P (Inf |dk = 1) =
dP (Inf |dk = 1)

dk

(
E((θ − k)∗)− E((θ − k)∗|s∗)

)
(12)

Intuitively, as the information advantage increases, the probability of informed trading must decrease.
Note that:

P (Inf |dk = 1) =
P (dk = 1|Inf)(1− δ)

P (dk = 1)

while the denominator depends on the intensity of informed trading the numerator does not; hence,

dP (Inf |dk = 1)

dk
=− P (dk = 1|Inf)(1− δ)

P (dk = 1)2

dP (dk = 1)

dk

=− P (Inf |dk = 1)
dP (dk = 1)

dk

1

P (dk = 1)

=− dlog(P (dk = 1))

dk

Therefore, Equation (12) simplifies to:

d

(
E((θ − k)+|s∗)− E((θ − k)+)

)
dk

= −dlog(P (dk = 1))

dk

(
E((θ − k)∗)− E((θ − k)∗|s∗)

)
Using the binary assumption: E((θ − k)+|s∗) = αs(θU − k), we get to:

1

θU − k
dk = dlog(P (dk = 1))

Integrating both sides and applying the exponential function:

P (dk = 1) = λ(s∗)(θU − k) (13)

λ(s∗) > 0 arises as the integration constant. We can use the total probability theorem to compute β(k, s):

P (dk = 1|Inf)(1− δ) + δg(s∗)β(k, s∗) = λ(s∗)(θU − k)⇒ β(k, s∗) =
1

δg(s∗)
(λ(s∗)(θU − k) + PN) (14)

To compute prices we start by computing the probability of a noise trader:

P (Inf |dk = 1) =
P (dk = 1|Inf)(1− δ)

P (dk = 1)

From Equations (13) and (14), we can substitute to obtain:

P (Inf |dk = 1) =
λ(s∗)(θU − k)− δg(s∗)β(k, s∗)

λ(s∗)(θU − k)
= 1− δg(s∗)β(k, s∗)

λ(s∗)(θU − k)

Using this expression and the binary specification in equation (11), we get the price as a function of
informed intensity:

A(k) = α∗s(θU − k)− (α∗s − α0)

(
1− δg(s∗)β(k, s∗)

λ(s∗)(θU − k)

)
(θU − k)

Substituting β(k, s∗), we obtain the result.
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To obtain the limit of the segments, we ensure informed agents trade with probability equal to one:

K∫
K

1

δg(s∗k)
(λ(s∗k)(θU − k)− PN) = 1

The integral results in a second degree polynomial with two roots:

K(s∗i ) =

(
θU −

PN

λ(s∗i )

)
±

√((
θU −

PN

λ(s∗i )

)
−K(s∗i )

)2

− 2
δg(s∗i )

λ(s∗i )

The highest root (plus sign) implies K(s∗i ) >
(
θU − PN

λ(s∗i )

)
⇒ ∃k s.t. β(k, s∗k) < 0; hence it cannot be an

equilibrium. On the other hand, the lowest root ensures the intensity is positive for all strikes.
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