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1 Introduction

In the past, many economic recessions have been accompanied or even front-run by large

swings in commodity prices. As an input factor for many essential products or as an energy

provider for the production process, commodities are closely tied to input and output price

levels. Its scarcity in the case of international conflicts or natural disasters initiates changes

in the general price level. Thus, commodity price risk implies a risk for changes in consumer

prices and inflation. Central banks consider inflation as a key indicator for their monetary

policy decisions. In the Taylor rule, deviations of the inflation from the target inflation of 2%

as well as macroeconomic variables play a key role for the optimal short-term interest rate.

However, the size of the deviation matters. For inflation, the target rate actually is a target

range in which small deviations from the target rate do not cause central bank reactions. In

contrast, larger deviations affect the economic condition and inflation expectations significantly.

They require central bank interventions!

The uncertainty about future inflation, and the central bank reaction to it, is a risk factor

for long-term bonds but not for short-term bonds. The latter have anyways expired prior to

central bank reaction. This asymmetry in the exposure to interest rate risk causes a higher

compensation for long-term bonds, the so-called bond excess returns.

In summary, commodity price risk leads to inflation risk. Through central bank’s reaction

this creates interest rate uncertainty, which is especially relevant for longer-term bonds. As the

effect is predominantly relevant for large swings in commodity prices, commodity tail risk is an

especially good predictor for bond excess returns.

We show the aforementioned mechanism in a theoretical model and in an empirical eval-

uation. In the model we consider an economy with two bonds. The short-term bond is in

perfectly elastic supply at a rate set by the central bank. The long-term bond is in fixed supply

and priced in equilibrium. The returns required for the long-term bond depend on the variance

of the future discount factor, which is altered by the central bank in a noisy way when the

inflation is outside a target range. These significant deviations from the target range can occur

through fluctuations, but most likely through jumps in the commodity prices. The probability

of these jumps is our measure for tail risk. We solve the model analytically and show the results
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in a static and dynamic model.

We show the theoretical link between commodity and bond markets through a regression

of the bond risk premium on the commodity tail risk (CT). We confirm that there is indeed a

strong positive relation between the two – both in the uptail as well as in the downtail. Over

a one-year horizon, the commodity tail by itself significantly predicts future excess returns for

two-, three-, four-, and five-year bonds with an R2 ranging between 19.88% and 30.12%. A one

standard deviation increase in the commodity up-tail (down-tail) indicates an increase of 144

(128) bps in the bond risk premium – compared to an average bond risk premium of 142 bps.

Notably, the commodity up-tail (down-tail) strongly predicts bond returns with out-of-sample

R-square up to 19.07% (5.77%).

To confirm the model mechanism step by step, we follow it closely in its intermediary

stages. The first step of the model is linking commodity tails to inflation. As predicted by

the model, commodity uptail increases future inflation and commodity downtail decreases it.

The next step in the model mechanism is the linkage between commodity tail risk and interest

rate uncertainty. The model connects tail risk on both sides of the distribution to higher

uncertainty about monetary policy. Our regression shows that this is indeed correct: Both,

uptail and downtail risk increase interest rate uncertainty empirically. The last step in the

analysis is then our main finding, that commodity tail risk increases bond excess returns.

As documented theoretically and empirically, the link between commodity markets and

bond markets is direct: Changes in the commodity market trigger inflation, which is a direct

ingredient of the Taylor rule. This distinguishes commodity markets from other markets, like for

example stock markets. In these markets, the link is based on a common macroeconomic factor.

Nevertheless, the commodity market is also linked to the overall macroeconomic condition.

However, while high stock prices are generally a good sign for the macroeconomic condition,

the situation is more complex for commodity prices. High prices can also be supply driven.

Supply shortages increase prices and are simultaneously hindering economic progress. Thus,

both uptail and downtail commodity prices can be negative news – and empirically are.

Our empirical evaluation is based on recent advances in econometrics and statistics. We

construct our tail risk measure based on the methodology developed by Kelly and Jiang (2014).
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It estimates a time-varying tail risk from the cross-section of returns. This way, it provides

a meaningful measure and does not require extensive sample horizons or high-frequency data.

For the construction of one aggregate commodity tail risk measure out of 24 individual com-

modities, we apply the Partial Least squres (PLS) approach. In comparison with the standard

Principal Components Analysis (PCA) the PLS method is more effective in extracting predic-

tive information and filter out noise (Zhao, Zhou, and Zhu, 2021). Due to the variety of the 24

commodities, a great amount of obscured information is inherent in their information set and

in this way can be made useful for the prediction.

This paper adds to several strands of literature. First, it contributes to the literature

linking commodity and bond markets, both empirically and theoretically. To date, the literature

understanding how and why commodity prices impact the bond market is scarce. Only a few

studies have investigated their connection. Tang and Xiong (2012), Öztek and Öcal (2017),

and Da, Tang, Tao, and Yang (2023) document return synchronization in both market due to

the increasing financialization and integration of commodity markets. Also López (2014) and

Zhang, Wang, Xiong, and Zou (2021) find an interrelation by recording volatility spillovers. Our

paper provides a new strand connecting both markets: Commodity tail risk indicates inflation

risk and thus monetary uncertainty – which in turn affects bond market excess returns.

Second, our model strengthens our cognizance of the relevance of commodity prices in

the economic network. Among others, Hammoudeh (2007), Silvennoinen and Thorp (2013),

and Mensi, Hammoudeh, Shahzad, and Shahbaz (2016) show that commodity prices have also

become more closely connected stock markets. Chiang, Hughen, and Sagi, 2015; Chiang and

Hughen, 2017 show the influence of commodities on stock returns. Also, commodities serve as

an important indicator for the macroeconomic condition. Labys and Maizels (1991) and Browne

and Cronin (2010) document a link between oil prices and inflation. Brown, Stephen, Yucel,

and Mine (2002), Ferderer (1997), Hamilton (2003), and Ge and Tang (2020) draw connections

of commodity prices to GDP growth or more general output growth. Other interrelations

of commmodities with macroeconomic factors include political risk (Barsky and Kilian, 2004;

Gong and Xu, 2022), business cycles (Leduc and Sill, 2004; Schwark, 2014; Chevallier, Gatumel,

and Ielpo, 2014), and production cost (Kilian, 2009). While many of these studies focus on
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oil prices as the main commodity, we take a variety of commodities into account and find that

these indeed matter – some even more than oil. Moreover, we show that tail risk is the better

explanatory factor than pure price changes, both theoretically and empirically.

Third, we contribute to a recognition of tail risk as a relevant economic measure for risk.

The literature has emphasized the importance of tail risk in influencing economic conditions

and asset prices. Starting from Hill (1975), a large body of literature (Jansen and De Vries,

1991; McNeil and Frey, 2000; Hartmann, Straetmans, and Vries, 2004; Poon, Rockinger, and

Tawn, 2004; Allen, Bali, and Tang, 2012; Eser and Schwaab, 2016; Chabi-Yo, Ruenzi, and

Weigert, 2018; Davydov, Vähämaa, and Yasar, 2021, and Cong, Li, Tang, and Yang (2023))

has advanced the Hill (1975)’s tail estimator on asset returns and investigate its influence on

the economy and asset returns. Other researchers start to utilize alternative data, to construct

tail risk measures. For example, Gao, Lu, and Song (2019) constructs tail risks based on

out-of-the money put option data on various asset classes. Manela and Moreira (2017), and

Chen, Yao, Zhang, and Zhu (2023) construct rare disaster index based on text data and option

prices. Adrian, Boyarchenko, and Giannone (2019) and Marfè and Pénasse (2024) implement

semi-parametric approach and characterizes the tail risk in macroeconomic variables. Our

paper employs a panel estimation method, specifically the PLS approach, to model tail risks

within a comprehensive selection of commodities. In our framework, commodity tail risks

act as important predictors for bond risk premium and future economic condition. Moreover,

commodity tail risk outperforms other risk measures like volatility or absolute returns.

Additionally, our paper adds to the literature on the predictability of bond risk premia,

especially through factors from outside the bond market. The connection between stock and

bond markets has been studied by, among others, Cochrane (2011), Baker, Wurgler, and Yuan

(2012), Koijen, Lustig, and Van Nieuwerburgh (2017), Campbell, Pflueger, and Viceira (2020).

Schraeder, Sojli, Subrahmanyam, and Tham (2022) show that the volatility-to-volume ratio

on the stock market indicates macroeconomic uncertainty and as a result bond excess re-

turns. Other influencing factors include, but are not limited to investors’ demand for informa-

tion(Benamar, Foucault, and Vega, 2021), the combination of the current yield and macroe-

conomic variables (Moench and Soofi-Siavash, 2022), the intermediary balance sheets (Du,
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Hébert, and Li, 2023), and the unspanned volatility risks (Bakshi, Crosby, Gao, and Hansen,

2023). Recent studies by Bianchi, Büchner, and Tamoni (2021) and Wan, Fulop, and Li (2022)

incorporate machine learning and Bayesian learning approaches to predict bond risk premia.

In comparison with the traditional bond market predictors, we show that our measure of

tail risk is adding additional information. Commodity tail risk is unspanned by the Cochrane

and Piazzesi (2005) (CP) factor, macroeconomic predictors (the Ludvigson and Ng (2009) (LN)

factor), the Cieslak and Povala (2015) (CPo) factor, and the principal components of yields (e.g.,

Bauer and Hamilton, 2018; Zhao, Zhou, and Zhu, 2021), and the Moench and Soofi-Siavash

(2022) (MS) factor. More importantly, CT outperforms these predictors in out-of-sample tests

with an out-of-sample R2 ranging from 5.38% to 27.32%. The empirical results are also robust

to accounting for small-sample properties of the data and to employing different statistical

testing criterion, such as Bauer and Hamilton (2018)’s bias-corrected p-values (BH p-values).

Finally, our paper shows the stability of commodity tail risk as a predictor also in many

other countries, which links it to the literature on risk premia in international bond markets.

Dahlquist and Hasseltoft (2013) build a global factor based on the Cochrane and Piazzesi

(2005) factor and investigate bond return predictability in four international bond markets –

the United States, the United Kingdom, Germany, and Switzerland. Also Zhao, Zhou, and Zhu

(2021) forecast bond returns in these four countries by construction of a global macroeconomic

factor. In our paper, we find that the CT factor is more pertinent to macroeconomic trends and

excels in predicting bond risk premia in a set of major bond countries, including the United

States, Canada, France, Germany, Italy, Japan, and the United Kingdom.

The remaining paper proceeds as follows. Section 2 presents our model and its formulates

its empirical predictions. Section 3 provides a description of the data and methodology used.

Section 4 presents the results of our empirical analysis and demonstrates that the CT factor is

an important predictor of bond risk premia. Section 5 follows the model mechanism closely and

also documents the validity of the intermediary steps. Section 6 presents additional robustness

checks of our empirical findings, confirming the results also for international markets. Finally,

section 7 concludes the paper.
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2 Theoretical Model

We consider an economy in which shocks to commodity prices drive inflation. When inflation is

outside the target interval, the central bank adjusts interest rates according to an inflation-based

Taylor rule. Thus, tail risk in commodity prices implies uncertainty about future inflation and

the central bank’s reaction. This monetary uncertainty affects prices for long-term bonds more

than for short-term bonds, driving bond-excess returns. Figure 1 shows the model timeline.

t t+1

• update on tail risk

• expectation about central bank policy

• realization bond prices

• it+1 inflation realizes

• βt+1 set by central bank

• long- and short-term returns realize

Figure 1: Timeline of events

2.1 Prices and Inflation

Our economy produces goods through the refinement of commodities, which serve as an input

factor. Thus, the cost of a good is the product of the commodity price Ct and the cost of its

refinement Rt,

Pt = Rt · Ct.

The growth rate of the refinement cost is normally distributed, Rt+1 = Rt · exp(gR,t+1), with

gR,t+1 ∼ N(µR, σ
2
R). In normal times, the growth rate of the commodity price, Ct+1 = Ct ·

exp(gC,t+1), also follows an independent normal distribution. However, in rare tail events,

Bernoulli-distributed demand or supply shocks affect the growth rate. The probability of an

uptail shock (downtail shock) is πH (πL). The corresponding size of the uptail (downtail) shock

is normally distributed with mean µH > 0 (µL < 0) and volatility σH (σL). In summary, the

commodity growth rate follows the distribution

gC,t+1 ∼ N(µC , σ
2
C) +B(πH) ·N(µH , σ

2
H) +B(πL) ·N(µL, σ

2
L).

7



Thus, on days with a high jump probability (tail risk) in the commodity growth rate, we face

two additional sources of uncertainty: First, the mean growth rate in the case of a jump deviates

from the mean growth in normal times. Thus, a higher jump risk implies a higher uncertainty

about the mean growth rate. Second, in the case of a jump we face uncertainty about the size

of the jump.

Aggregating the refinement cost and the commodity price, the total price of a consumption

good in the next period is

Pt+1 = Rt+1 ·Ct+1 = Ct · exp(gC,t+1) ·Rt · exp(gR,t+1) = Pt · exp(gC,t+1 + gR,t+1) = Pt · exp(it+1).

Thus, inflation is the sum of the two growth rates, it+1 = gC,t+1 + gR,t+1. It is directly affected

by the Bernoulli distributed upward and downward tail events in commodity prices. Every

combination of no/one upward shock and no/one downward shock can occur in this economy.

Table 1 summarizes the probabilities of the different scenarios and the corresponding inflation

distributions.

Uptail shock
No Yes

Downtail shock

No

Scenario: N Sceario: U
πN = (1− πH)(1− πL) πU = πH(1− πL)

µN = µC + µR µU = µC + µR + µH

σN =
√

σ2
C + σ2

R σU =
√
σ2
C + σ2

R + σ2
H

Yes

Scenario: D Scenario: B
πD = πL(1− πH) πB = πL · πH

µD = µC + µR + µL µB = µC + µR + µH + µL

σD =
√

σ2
C + σ2

R + σ2
L σB =

√
σ2
C + σ2

R + σ2
H + σ2

L

Table 1: Distribution characteristics for different scenarios

2.2 Central Bank Reaction

The central bank reacts to the inflation according to a simplified version of the Taylor rule,

which is only based on inflation: When inflation is in the target range around the target rate
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of two percent, |it+1 − 2%| < α, the central bank does not change its monetary policy. It

leaves the interest rate at the mean-reverted (with mean-reversion speed m) previous level

βt+1 = m · 0.98 + (1 − m) · βt. When inflation is outside the target range, it+1 − 2% > α or

it+1−2% < −α, the central bank changes the one-period discount factor. It fights high inflation

with high interest rates and tries to prevent deflation through low interest rates. Thus, it sets

the discount factor for the next period to βt+1 = m · 0.98 + (1−m) · βt − (it+1 − 2%) · γ + ϵt+1,

with γ ∈ [0, 1] and ϵ ∼ N(0, σ2
ϵ ) being a noise term.

The aggregate distribution of the discount factor set in the next period is a mixture of

a discrete and continuous distribution. When the inflation stays inside the target range, the

discount factor set in the next period is certain. This event occurs with probability

Pt(|it+1 − 2%| < α) =
∑

i∈{N,U,D,B}

πi ·
[
Φ

(
2% + α− µi

σi

)
− Φ

(
2%− α− µi

σi

)]
.

When inflation is outside the target range, the discount factor has the probability density

function
∫ 2%−α

−∞ p(βt+1|it+1 = I) · p(it+1 = I)dI +
∫∞
2%+α

p(βt+1|it+1 = I) · p(it+1 = I)dI, with

p(βt−m·0.98+(1−m)·βt−1|it = I) =
1

σϵ

√
2π

exp

(
−0.5 ·

(
x− γ · (I − 2%)

σϵ

)2
)
·1I /∈[2%−α,2%+α],

p(it = I) =
∑

i∈{N,U,D,B}

πi ·
1

2πσi

· exp
(
−(I − µi)

2

2 · σ2
i

)
.

Thus, everything else equal, higher tail-risk parameters πL and πH decrease the probability that

the interest rate remains unchanged and consequently increases the interest rate uncertainty.

2.3 Impact on Bond Returns

In the economy, investors have the choice to invest in long-term (2-period) bonds and/or short-

term (1-period) bonds. Agents determine their demand by maximizing their mean-variance

utility out of next period wealth

maxEt[wt+1]−
ν

2
V art(wt+1)

9



subject to the budget constraint

wt+1 = xB,t(βt+1 −
1

βt

Bt) +
1

βt

wt.

The first order condition for the maximization problem determines the optimal portfolio

holdings in the long-term bond

xB,t =
Et[βt+1]− 1

βt
Bt

νV art(βt+1)
.

The short-term bond is in perfectly elastic supply and yields the interest rate set by the central

bank. The price of the long-term bond forms in equilibrium such that the market clears:

Investors’ optimal demand for the two-period bond, xB,t equals the fixed normalized one-unit

supply, xB,t = 1. Thus, we obtain the following two-period bond price

Bt = βt {Et[βt+1]− νV art(βt+1)} .

The bond price depends on the expected change in central bank policy and the uncertainty

about the central bank reaction. Appendix B derives the expectation and variance of the next

period discount factor βt+1.

2.4 Simulation

To illustrate the effects of tail risk on bond excess returns, we simulate the model. We take the

model parameters πH as a measure for upside tail risk and πL as a measure for downside tail

risk.

[Please insert Figure 2 here]

When considering upside and downside tail risk together (Subfigure a)), an increase in

both tail risks leads to an increase in bond excess returns. These bond excess returns are a

compensation for risk, coming from two sources. First, in the case of a tail event, the size of

the tail shock is uncertain. Thus, in addition to the normal volatility σC we are also facing the
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uncertainty about the size of the tail shock σH or σL. Second, an increase in the probability

of a tail event also increases the uncertainty about the future state of the economy, with or

without tail event. As the mean of the commodity growth rate and inflation differ in the tail

scenarios (adjusted by µH or µL), this generates additional uncertainty. Subfigures b) and c)

show that the positive relationship between tail risk and bond excess returns holds for both

tails, the upside tail risk and the downside tail risk.

The additional uncertainty about the next period interest rate, which affects long term

bonds returns, is only elevated when the central bank has incentives to alter the monetary

policy. This is the case when the inflation rate deviates significantly (by more than α). The

changes in inflation rate are caused by volatility and the realization of tail risk. While the first

is most of the time leading to small, negligible deviations from the target rate, the realizations

of tail risk cause changes in the monetary policy.

Subfigure d) shows that for normal volatility levels an increase in volatility does not increase

monetary policy risk a lot. Thus, bond excess returns do not increase perceptibly when volatility

increases. Only when the volatility exceeds a certain level, the volatility itself causes significant

deviations (of more than α) of the inflation rate from the target rate. In these cases volatility

alone triggers central bank interventions and no tail shocks are necessary to cause interest rate

risk.

In a next step, we consider the uptail and the downtail risk to be time-variant. Both follow

a Markov process with N states and transition probability matrix Ω, with

Ω =



π1,1 π1,2 . . . π1,N

π2,1 π2,2 . . . π2,N

...
...

. . .
...

πN,1 πN,2 . . . πN,N


(1)

In the simulation of the model, we consider the transition probability matrix for the uptail

risk ΩU and the transition probability matrix for the downtail risk ΩD to be the same tridiagonal

matrix with H = 5 equally distant tail-risk states (0.02, 0.04, 0.06, 0.08, 0.10). We assume the

probability of jumping to a neighboring tail-risk state is 0.025. The probability of staying in
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the current tail-risk state is 0.95 (for the highest and lowest states the probability of staying

in the current probability state is 0.975). The tail-risk probability itself moves gradual over

time, such that for a non-neighboring state, the probability of switching to it is zero. Even

though the uptail and the downtail distributions are kept identical, the Markov chain itself is

independent between the uptail risk and the downtail risk process.

Table 2: Tail-risk regression

This table displays the regression of bond excess returns on uptail risk and/or downtail risk.

(1) (2) (3)

rxB rxB rxB

Intercept 0.001 0.003 0.003
Uptail 0.048 0.048
Downtail 0.048 0.048

3 Data and Methodology

In this section, we present our data and methodology. First, we describe our measurement

of commodity tail risk, which relies on the tail index introduced by Kelly and Jiang (2014).

Second, we outline the computation of Treasury bond risk premia as proposed by Cochrane

and Piazzesi (2005). Finally, we discuss the Partial Least Squares (PLS) regression approach,

employed to discern the most relevant predictive information from potentially noisy commodity

information sets.

3.1 Measure of Commodity Tail risk

We estimate the time-varying component of return tails, πt, month-by-month by applying Hill

(1975)’s power law estimator to the set of daily return observations for a given commodity

in month t. With each commodity’s nearest- or next-nearest-to-delivery futures contract,1 we

1Following Hill (1975), a large body of literature (McNeil and Frey, 2000; Hartmann, Straetmans, and Vries,
2004; Poon, Rockinger, and Tawn, 2004; Allen, Bali, and Tang, 2012; Kelly and Jiang, 2014; Eser and Schwaab,
2016; Davydov, Vähämaa, and Yasar, 2021; Cong, Li, Tang, and Yang, 2023) has advanced Hill (1975)’s power
law estimator to construct tail risk measures, and finds that tail risks are important factors in influencing
economy and asset returns.

12



calculate commodity up- and down-tail risk as follows:

πu =
1

n

n∑
i=1

ln
Rk,u

Rmax

, (2)

πd =
1

n

n∑
i=1

ln
Rk,d

Rmin

. (3)

We denote Rk,u or Rk,d as the kth daily return that is higher than Rmax or lower than Rmin,

and n being their total number. Following Kelly and Jiang (2014), we set Rmax or Rmin such

that it captures the highest or lowest five percent of the futures returns for a given commodity.

For the time-series of up- and down-tail risk we consider the past 6-month daily excess

returns of a set of 24 commodities. The corresponding data is sourced from Bloomberg and

spans more than 15 years. The commodities are categorized into energy products, livestock,

precious metals, industrial metals, and agricultural products (refer to Table 3). This selection

aligns with the commodity category of the Standard & Poor’s Goldman Sachs Commodity

Index (GSCI) and encompasses the most liquid commodity futures contracts.2 It includes

commodities actively traded in prominent exchanges such as the Chicago Board of Trade,

New York Mercantile Exchange, New York Board of Trade, London Metal Exchange, and

International Petroleum Exchange.3

Table 3 presents the summary statistics for the up- and down-tail risk for the 24 com-

modities. The tail risks exhibit considerable volatility, ranging from 9.52% to 18.30% for the

up-tail and from 10.15% to 22.44% for the down-tail. Additionally, the indexes show high

autocorrelation, with serial correlation persisting for up to 12 months.

[Please insert Table 3 here]

2This comprehensive coverage reinforces the representativeness of our commodities set, as discussed in
Moskowitz, Yao, and Pedersen, 2011; Huang, Li, Wang, and Zhou, 2020).

3The Chicago Board of Trade exchanges agricultural products and livestock such as wheat, soybean, and
lean hog. The New York Mercantile Exchange trades energy products and precious metals. The New York
Board of Trade deals with other agricultural products, including sugar, cocoa, and coffee. The London Metal
Exchange trades industrial metals and the International Petroleum Exchange deals with energy products like
Brent oil.

13



3.2 Bond Risk Premia

Following existing literature on bond prediction, we focus on the U.S. Treasury bond marke,

with price data sourced from the Fama-Bliss dataset of the Center for Research in Security

Prices (CRSP). As a supplement to our primary findings, we also incorporate zero-coupon

bond yields constructed by Gürkaynak, Sack, and Wright (2007). Following Cochrane and

Piazzesi (2005), we define the (log) yield of an n-year bond as:

y
(n)
t = − 1

n
p
(n)
t , (4)

with p
(n)
t = log

(
P

(n)
t

)
being the log bond price of the n-year zero-coupon bond at the time t.

The log return of an n-year bond at time t, which is sold as an (n− 1)-year bond at time t+1,

is

r
(n)
t+1 = p

(n−1)
t+1 − p

(n)
t . (5)

The bond risk premium of an n-year bond is the difference between the n-year bond return and

the 1-year interest rate,

rx
(n)
t+1 = r

(n)
t+1 − y

(1)
t . (6)

Table 4 provides a summary of 2-year to 5-year Treasury bond risk premia (excess returns).

Notably, these bond risk premia exhibit an increasing trend with longer maturities. For exam-

ple, the average value of the 5-year monthly bond risk premium is 2.151, while the corresponding

figure for the 2-year bond is 0.575. The volatility of bond risk premiums increases with the

maturity of the contract – ranging from 1.159% to 4.180%. The autocorrelation coefficients

show persistence at 1-month lags, which dissipates for the 12-month lags.

Figure 4 illustrates the time series of bond risk premia between January 1993 and June

2022. Shaded bars in the figure denote economic recessions as identified by the National Bureau

of Economic Research (NBER). It is evident that bonds with different maturities exhibit similar

trends, with excess returns generally increasing during recessionary periods.

[Please insert Table 4 and Figure 4 here]
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3.3 PLS Approach

To consolidate the tail risk of the 24 commodities and extract the information relevant for

forecasting bond risk premia, we utilize the Partial Least Squares (PLS) approach. As it is

deemed to be more efficient compared to Principal Components Analysis (PCA) (Zhao, Zhou,

and Zhu, 2021), we can effectively extract predictive information from high-dimensional return

data and filter out noise. The PLS method has been widely adopted in finance and economic

literature, particularly in the prediction of stock returns (Huang, Jiang, Tu, and Zhou, 2015;

Light, Maslov, and Rytchkov, 2017; Chen, Yao, Zhang, and Zhu, 2023).

Following Kelly and Pruitt (2013), Zhao, Zhou, and Zhu (2021) and Chen, Yao, Zhang,

and Zhu (2023), we denote Xt = (x1,t, x2,t, . . . , xN,t)
T as the 24×1 vector of the individual up-

or down-tail risk of the 24 commodity futures returns at time t.

In a first step, we regress Xt on a constant and the bond risk premium rxt+1:

xi,t = ωi,0 + ωi,1rxt+1 + ui,t, (7)

In this equation, the loading ωi captures the sensitivity of xi,t in the prediction of rxt+1.

In the second step, we run a cross-sectional regression of xi,t on the corresponding loading

ω̂i, which we obtained in the first step regression,

xi,t = ct + Tailtω̂i + vi,t. (8)

The regression coefficient Tailt represents the commodity up- or down-tail factor (CT), which

we use to predict bond risk premium rxt+1.

Kelly and Pruitt (2013) show that the two-stage regression can be replaced by an one-

step procedure.4 In the latter the tail risk Tailt is a linear combination of each individual

commodity’s up-tail or down-tail risk xi,t. The corresponding weights depend on the covariance

4We define T̂ = [ ˆTail1 ˆTail2 ... ˆTailT ]
′ as the commodity up- or down-tail factor, X = [x′

1 x′
2 ... x′

T ] as
the L × T matrix of individual commodity tail risk, and R = [rx1+h rx2+h ... rxT+h]

′ as the future bond risk
premium. Then the up- or down-tail factors are

T̂ = XJNX ′JTR(R′JTXJNX ′JTR)−1R′JTR. (9)

In this equation JL = IL − 1
L lLl

′
L, IL is the T -dimensional identity matrix, and lL is a T -vector of ones.
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between the individual tail risk xi,t and future bond risk premia (e.g. Lin, Wu, and Zhou, 2018;

Zhao, Zhou, and Zhu, 2021; Chen, Yao, Zhang, and Zhu, 2023). Those with a higher covariance

bear a greater weight in the aggregate tail factor.

Table 5 displays summary statistics of the CT. Compared with the up-tail factors (Panel

A), the down-tail factors (Panel B) are negative and more volatile. Both factors are posi-

tively skewed and highly persistent at the 1-month lag. Owing to a concomitant reduction

in the effective sample size, heteroscedasticity- and autocorrelation-consistent (HAC) standard

errors exhibit reduced reliability. Consequently, we address this concern by employing the

bias-corrected p-values proposed by Bauer and Hamilton (2018).

According to Panel C of Table 5, the factors are positively correlated. This positive

correlation also follows from Figure 4, which plots the time series of both tail factors and

their rolling correlation.

[Please insert Table 5 and Figure 4 here]

4 Empirical Analysis

This section presents our empirical findings. First, we delve into the in-sample predictive power

of commodity up- and down-tail factors in Section 4.1. In Section 4.2, we provide details on the

yield-spanning and macro-spanning tests of CT. Section 4.3 compares the forecasting power of

our tail factor with existing bond predictors. Finally, Section 4.4 provides the out-of-sample

predictive regressions.

4.1 In-Sample Predictive Regression

We use CT to predict bond risk premia based on the following predictive regression,

rx
(n)
t+1 = α + βTailt + εt+1, (10)

where rx
(n)
t+1 are 2- to 5-year Treasury bond risk premia, Tailt is the commodity up-tail factor

(UT) or the commodity down-tail factor (DT), and εt+1 is an error term. We test the sig-

16



nificance of the predictive coefficient by calculating Newey and West (1987) p-value based on

the heteroscedasticity- and autocorrelation-consistent (HAC) standard errors. Moreover, we

calculate Bauer and Hamilton (2018) p-values based on the parametric bootstrap approach.

Table 6 shows the corresponding regression results. Both, the UT and DT factor serve

as significant predictors of bond risk premia (Panels A and B) across various maturities. An

increase in the tail factor corresponds to an increase of the average bond risk premium of

0.289 (for the uptail) and 0.229 (for the downtail), with an adjusted R2 of 28.29% and 22.18%,

respectively. Also at the individual maturity levels, we observe a similar predictive power, with

an adjusted R2 ranging from 19.88% to 30.12%. Moreover, the UT and DT are statistically

significant at the 1% level, as indicated by the HAC p-values and the bootstrapped p-values.

4.2 Commodity Tails and the Spanning Tests

We test whether our CT contains additional information in forecasting bond returns beyond

the observed yields and a large set of macroeconomic and time-series variables. Specifically,

we consider the first five principal components (PCs) of the Gürkaynak, Sack, and Wright

(2007) month-end yield data,5 which represents the yield curve level, slope, curvature and

4th and 5th yield factors (for instance, Nelson and Siegel, 1987; Cochrane and Piazzesi, 2005;

Bauer and Hamilton, 2018; Moench and Soofi-Siavash, 2022). Also, we reconstruct the eight

macroeconomic factors of Moench and Soofi-Siavash (2022) based on our sample period to

implement the macro-spanning tests.

Here, we regress bond risk premia on the commodity tail factors (UT and DT) and the

first three PCs, the first five PCs of the observed yields, or the macro-yields factors based on

the following regression:

rx
(n)
t+1 = α + β′Xt + εt+1, (11)

where rx
(n)
t+1 denotes the equally-weighted yearly and 2- to 5-year Treasury bond risk premia, Xt

represents different combinations of factors. Table 7 reports the results of the spanning test for

Treasury bond risk premia across various maturities. In Table 7, PC1-PC5 are the five principal

5The Fama-Bliss dataset is limited for researching bond excess returns on account of restricted maturities
(only up to five years). (e.g., Le and Singleton, 2013; Schraeder, Sojli, Subrahmanyam, and Tham, 2022)
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components of Gürkaynak, Sack, and Wright (2007) yields, and M1-M8 are eight macroeco-

nomic factors of Moench and Soofi-Siavash (2022)6, and UT and DT denote our constructed

commodity up- and down-tail factor.

We respectively present the parameter estimates, the adjusted R2, and the gain in the

adjusted R2 relative to the regression without the CT. From Panel A of Table 7, we find that

UT is still highly statistically significant after controlling for the first three PCs, the first five

PCs and the macro-yields factors. Moreover, the Bauer and Hamilton (2018) p-values do not

change the significance. A similar result is also seen in DT, which is significantly positive in

predicting bond returns across different maturities shown in Panel B. With regards to R2, we

find UT (DT) has enormously significant marginal predictive power for future bond returns

changes, for instance, UT markedly increases predictability concerning the first three principal

components (column 7), the first five principal components (column 9), and the macro-yields

model (column 11), with the R̄2 increasing from 15.15% to 23.13% for the two-year maturity

reported in Panel A, and the figures for DT are from 11.60% to 18.68%7.

[Please insert Table 7 and Table A1 here]

4.3 Commodity Tails and Existing Bond Predictors

The essential point is to test whether CT is robust in forecasting Treasury bond risk premia

after controlling other competitors. In this subsection, we control for the Cochrane and Piazzesi

(2005) (CP) factor, the Ludvigson and Ng (2009) (LN) factor and the Cieslak and Povala (2015)

(CPo) factor in our analysis. 8 The construction of these factors is shown in Appendix C.

6The eight macroeconomic factors are estimated by regressing 135 macroeconomic series on the PC1-PC5 and
then extracting principal components from the residuals. The macroeconomic series covers the most important
categories of U.S. economic activity, including the FRED-MD database compiled by McCracken and Ng (2016),
the average weekly hours of production and non-supervisory employees, the Philadelphia Fed leading indicator
for the U.S. economy, the VXO index, the measure of realized stock market volatility from Berger, Dew-Becker,
and Giglio (2020), the Bank of America Merrill Lynch MOVE bond volatility index, the measure of financial
uncertainty from Ludvigson, Ma, and Ng (2021); the excess bond premium from Gilchrist and Zakraǰsek (2012);
and the three-month Treasury bill forecast from the Consensus Economics Survey of Professional Forecasters.

7We report the result of regression of bond risk premia on the first three PCs, the first five PCs of the
observed yields, or the macro-yields factors alone in Table A1.

8Cochrane and Piazzesi (2005) construct a tent-shaped factor and explain more than 30% of the variation
in Treasury bond risk premia. Ludvigson and Ng (2009) estimate the 8 principal component factors from the
132 monthly macroeconomic indicators, and significantly predict bond returns in- and out-of-sample. Cieslak
and Povala (2015) propose risk premia can be implied by the yield curve and trend inflation.
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Here, we regress bond risk premia on the commodity tail factors (UT and DT) and the

competitors based on the following regression:

rx
(n)
t+1 = α + βTailt + γFt + εt+1, (12)

where rx
(n)
t+1 denotes the equally-weighted yearly and 2- to 5-year Treasury bond risk premia,

Tailt denotes the commodity up-tail factor (UT) or down-tail factor (DT) based on the PLS

method, Ft denotes the bond predictors (the CP factor, the LN factor, and the CPo factor),

and εt+1 is an error term. Table 8 reports these predictive results.

Concerning the CP factor, Panel A reveals that UT explains 29.42%–32.57% of the varia-

tion in bond risk premia after controlling the CP factor, with the coefficients all significantly

positive according to the NW p-value and the BC p-value. Similar significance for DT is also

shown in Panel B, whereas the adjusted R2 is small. Likewise, to test whether the CT contains

any predictive information beyond those already subsumed by the CP factor, we also calculate

the gain of the R̄2 compared with the model with the CP factor alone. As shown on the first

part of two panels, both factors (UT and DT) have a substantial ∆R̄2 for all bond maturities,

which implies CT captures more information on the dynamics of bond risk premia.

In the middle part of the two Panels, we present results from running predictive regressions

for the LN factor and the commodity up- or down-tail factor. UT and DT respectively explain

31.74%–35.28% and 26.85%-33.11% of the variation in bond risk premia of various maturities

when we add the LN factor to the model. Meanwhile, the coefficients of two types of tail factors

are all significantly positive. The inclusion of CT increases the adjusted R2 by about 15.94 to

22.95 percentage points for all bond maturities, indicating that our constructed factors provide

an important complementary information source to the macroeconomic predictor.

In addition, it is clear from the third part of the panels that CT still has high predictive

power for bond risk premia, using the CPo factor as a benchmark. In Panel A, we can find

that UT is statistically and economically significant with the inclusion of the CPo factor. The

adjusted R2 for average bond risk premia is 30.15%, and the figure for DT is relatively low

(24.42% only). Moreover, augmenting the predictive regression with UT or DT increases the
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explanatory power of about 20.76 or 15.03 percentage points for average excess bond returns,

where the most ken-speckle improvement happens for the bond with shorter maturities.

Overall, CT we constructed remains economically and statistically significant even in the

presence of the prevailing bond predictors, and accounting for small sample biases by Bauer and

Hamilton (2018) p-values do not affect our conclusion. In the meantime, The incremental of

the adjusted R2 is highly substantial across various maturities. By comparison, we also regress

bond risk premia on the CP factor, the LN factor, or the CPo factor alone, and report the

results in Table A2. Although these factors remain significant at the 5% level for all bonds,

the explanatory powers are lower than those reported in other studies (e.g., Cochrane and

Piazzesi, 2005; Ludvigson and Ng, 2009; Cieslak and Povala, 2015), which can be attributed to

the difference in the sample period.

[Please insert Table 8 and Table A2 here]

4.4 Out-of-Sample Predictive Regression

To test the out-of-sampel predictive power of the CT, we follow Goyal and Welch (2008). Using

a rolling window to forecast bond risk premia, We split our sample into two halves. We use

the first half of the sample to predict the return of the first month of the second half.9 Then,

we update the estimates with the data of this month for the prediction of the next month and

continue till the end of the sample.

To judge whether CT contains relevant information, we compare our model to a benchmark

model. One traditional benchmark model is the historical average (e.g., Goyal and Welch,

2008; Campbell and Thompson, 2008). We define the historical average bond risk premium

as rx
(n)
t+1 = 1

t

∑t
j=1 rx

(n)
j . In addition, we also consider benchmark models with the first three

principal components and other bond predictors.

When we define benchmark model forecast as r̃x
(n)
t and the forecast from the predictive

9The first window runs from January 1993 to September 2007 (177 monthly observations) and forecasts the
bond risk premium in October 2007.
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regression with CT as r̂x
(n)
t , the out of sample R2

oos is

R2
oos = 1−

∑T
t=s0+1

(
rx

(n)
t − r̂x

(n)
t

)2
∑T

t=s0+1

(
rx

(n)
t − r̃x

(n)
t

)2 , (13)

In this equation, s0 denotes the sample size that we choose to train the model for the first

time. If the out-of-sample R2 is positive, the mean squared prediction errors (MSPE) of the

predictive model with CT is lower than that of the benchmark model, indicating higher predic-

tive accuracy. To examine whether the predictive model with CT and the benchmark model

are statistically different, we use the Clark and West (2007) (CW ) test and the Giacomini and

White (2006) (GW ) test. The null hypothesis of the CW test is that two forecasting models

have equal MSPE (R2
oos=0), and it is suitable for the nested model. Also the GW test check

whether both models have equal predictive ability, but they consider the parameter uncertainty

in their null hypothesis.

Table 9 reports the out-of-sample predictive performance of the CT for Treasury excess

bond returns of various maturities when the historical average is the benchmark. The empirical

results show that both UT and DT have significantly positive R2
OOSs over the bond maturity

spectrum (17.03%-19.07% for UT and 4.61%-5.77% for DT). Moreover, in line with our model

predictions, the commodity up-tail factor performs better than the downtail factor. The uptail

factor possesses a substantial out-of-sample R2 and remains significant at the 1% level for all

bonds according to the CW test and the GW test.

Figure 5 plots the differences in cumulative squared prediction errors (DCSPE) between

the benchmark model and the predictive model to assess the persistence of the CT’s forecasting

performance over time. The DCSPEs of the benchmark model and the uptail model tend to

increase steadily over time. The DCSPE of the downtail model rises after a remarkable initial

decline.

Table 10 reports the out-of-sample results using various benchmark models. These include

the first three PCs of current yields, the CP factor, the LN factor, and the CPo factor. Panel

A shows that the addition of the uptail factor to the respective benchmark model increases
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the out-of-sample R2s significantly across bond maturities (9.80%-18.76% for the three PCs,

16.68%-20.60% for CP, 9.89%-17.92% for LN, and 17.81%-18.80% for CPo). Regarding the

CW test and the GW test, we find that most out-of-sample R2 values are significant at the 5%

level. Therefore, the uptail factor contains complementary information and generates significant

out-of-sample predictive power. Also for the downtail factor (Panel B), its addition to the

benchmark models generates substantial R2s in forecasting bond risk premia across various

maturities. In addition, Figure 6 presents the time series of the DCSPE without and with the

commodity tail factor (UT or DT) as one predictor. When the three PCs, CP, and CPo serve

as the benchmark, the differences are positive and increase steadily over time, but for LN, the

DCSPE starts rising after several years.

To identify which individual commodity matters most, we follow Next, we follow Lin, Wu,

and Zhou (2018), Zhao, Zhou, and Zhu (2021) and Chen, Yao, Zhang, and Zhu (2023): We

determine the average covariance between individual commodity up or down tail and future

bond risk premia in the out-of-sample regression. Figure 7 displays the rank of the commodities.

According to Panel A gold, lean hog and unleaded gasoline are the top three. For downtail,

aluminum, corn and sugar play the most significant roles. Considering commodities, which

are important for bot tails we find six commodities located in the top ten for bot tails: gold,

unleaded gasoline, gas oil, soy oil, coffee, and corn.

[Please insert Table 9, Table 10, Figure 5, Figure 6 and Figure 7 here]

5 Economic Mechanism

To empirically document the economic mechanism, we check the intermediate steps that follow

from the model. The first model implication is the link between commodity tail risk and

future inflation. We document this link in Subsection 5.1. The higher inflation uncertainty in

turn generates higher uncertainty about the central bank reaction. It generates interest rate

uncertainty, as we empirically document in Subsection 5.2.

While downtail risk is a negative sign for the economy both in stock markets and com-

modity markets, the uptail can be different. In contrast to the stock market, where high stock
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prices indicate a good economic condition, high commodity prices can also initiated by supply

shortages or interruptions of the supply chain. In Subsection 5.3, we show that actually the

latter is the case and that both, uptail and downtail risk, is a negative predictor for indicators

of macroeconomic prosperity.

5.1 Commodity Tails and Inflation

In a first step, we link commodity tail risk to future inflation10 based on the following regression:

Inflationh
t+1 = α + βTailt + εt+1, (14)

Tailt represents the commodity up- or down-tail factor extracted based on the PLS method. Fol-

lowing the method of Stock and Watson (1999), we use Iht+h−It to measure the inflation between

period t and t+h, where Iht+h = (1200/h)log(CPIt+h/CPIt) and It = (1200)log(CPIt/CPIt−1).

Table 11 reports the regression’s coefficient estimates and adjusted R2. Panel A shows

that UT is a significantly positive predictor of future 3- to 36-month inflation (using Newey

and West (1987) p-values). An increase in UT raises future inflation with a regression slope from

0.022 to 0.072. Moreover, UT factor explains 1.87%-8.52% of the variation in inflation across

the horizons. Similar to the forecasting power of the up-tail factor, DT by itself significantly

predicts future 3- to 36-month inflation with R2 ranging from 3.10% to 7.74%. As expected, the

coefficients of DT are negative, indicating that an increase in the down-tail factor is followed

by a lower inflation level.

Thus, changes in commodity prices are closely linked to inflation levels. This can induce

the central bank to change the short-term interest rate – creating interest rate uncertainty.

[Please insert Table 11 here]

10We complement previous studies that focus on inflation predictions (e.g., Stock and W Watson, 2003; Stock
and Watson, 2007; Wright, 2009; Salisu, Ademuyiwa, and Isah, 2018; Salisu, Swaray, and Sa’id, 2021; Kilian
and Zhou, 2022).
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5.2 Commodity Tails and Interest Rate Uncertainty

The next step in our model is the connection between commodity tail risk and interest rate

uncertainty. To illustrate this link, we regress future interest rate uncertainty on the up- to

down-tail risk of 24 commodity returns. To measure

IRUh
t+1 = α + βTailt + εt+1, (15)

where interest rate uncertainty (IRU) is the standard deviation of the daily federal funds rate

with 1- to 6-month horizons and Tailt represents our commodity up- or down-tail factor.

Table 12 reports the corresponding regression results. According to Panel A, the commod-

ity up-tail factor is significantly positive with the p-values less than 1% and the adjusted R2s

greater than 10% across various horizons. According to panel B, also the down-tail factor has

a significant positive impact on future interest rate uncertainty, with the adjusted R2s ranging

from 21.20% to 24.03%. Thus, an increase in UT or DT triggers higher future interest rate

uncertainty. Given that this interest rate risk is priced in long-term bonds, excess returns will

be higher.

[Please insert Table 12 here]

5.3 Links to the Macroeconomic Condition

Following Fama and French (1989) and Cochrane (2011), investors with higher risk aversion re-

quire a higher risk premium when they face the risk that the economic condition deteriorates. If

the increase in the CT implies great economic uncertainty, it should predict a positive risk pre-

mium in the bond market. Consistently, our main results of in-sample regressions indicate that

the commodity tail factors (UT and DT) increases are in fact associated with subsequent higher

bond risk premia. In this subsection, we regress the future economic variables on the current

CT constructed based on bond risk premia in order to test whether the CTs are countercyclical

variables.

MacroV ariablet+1 = α + ωTail
(avg)
t + ϵt+1, (16)
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where MacroV ariablet+1 represents the GDP growth (GDP Growth), the industrial production

growth (IPG), the nonfarm payroll growth (Payroll Growth), and the unemployment rate (Un-

emp Rate) in time t+ 1, Tail
(avg)
t represents the commodity up- or down-tail factor extracted

from equal-weighted yearly bond risk premia in the PLS method, and ϵt+1 is an error term.

Table 13 documents the parameter estimates and the explanatory power of predictive

regressions (16). First, we can see that the commodity up-tail factor has a significantly negative

relationship with the future GDP growth, IPG, and Payroll Growth from Panel A, and their R̄2

is 4.59%, 5.07% and 6.00%, respectively. Besides, concerning the future unemployment rate, it

exhibits significant predictive ability with a positive coefficient, and the values of R̄2 are higher.

Also, similar results are shown in Panel B, suggesting that the commodity up- and down-tail

factors serve as a strong signal for future macroeconomic conditions.

To summarize, we find that our CTs are significantly related to the future business cycle,

and higher tail risk implies deteriorations in future economic condition. This finding indicates

that the link to future economic state is a possible channel through which CTs affect the

time-varying bond risk premia.

[Please insert Table 13 here]

6 Robustness Tests

In this section, we assess the robustness of the commodity tail factors’ predictability. These

questions will be addressed: (1) whether the CT can predict bond risk premium within various

subsamples or (2) the different forecasting lags; (3) whether the CT extracted from different

moving windows can predict bond risk premium; (4) whether the CT can significantly improve

the predictive ability compared with commodity futures returns or volatility; (5) how does CT

perform in forecasting other countries’ Treasury bond returns; (6) whether CT has a more

substantial effect during recessions.
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6.1 Subsamples

Our full period covers 30 years, with many macroecoomic changes and alterations in monetary

policy. To test the robustness of our results over time, we divide the full sample into three

subsamples: 2000-2022, 2005-2022, and 2010-2022.

Table 14 shows that the predictive results of UT and DT are significant in all subsamples,

though the coefficients vary across periods. Moreover, our results are robust to the Bauer and

Hamilton (2018) test.

[Please insert Table 14 here]

6.2 Varying Forecasting Lags

To show that the CT factor can predict bond risk premia with different forecasting lags, we

regress the future 3-, 6-, 9- and 12-month Treasury bond risk premia on the commodity up-

or down-tail factor: rx
(n)
t+i = α + βTailt + εt+i, where rx

(n)
t+i is the future i-month bond risk

premium.

Table 15 reports the results of in-sample predictions for excess bond returns with the

different forecasting lags. Panel A shows that UT significantly predicts future 3- to 12-month

bond risk premia in-sample and out-of-sample. However, the adjusted R2 values are negative

for DT in out-of-sample regressions.

Overall, all in-sample regressions are significantly positive between the CT and the future

3-, 6-, 9- and 12-month excess bond returns. Also, the commodity up-tail factor has persistent

out-of-sample forecast performances.

[Please insert Table 15 here]

6.3 Estimation Windows

Up to now, we have constructed the tail ris based on the past 6-month commodity future

returns. As a robustness check, we alter the estimation window size between 1-month and

60-month and use it in the standard regression rx
(n)
t+1 = α + βTailt + εt+1.
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Figure 8 shows that the CT has a substantial in- and out-of-sample adjusted R2 in predict-

ing bond risk premia for varying estimation window sizes. Interestingly, the highest R2 values

are not obtained in our traditional 6-month moving window. UT generates the greatest R2 in

12-month or 14-month moving windows for in- or out-of-sample forecasts. For DT, greatest

R2 occurs for an even larger estimation window of two to three years. Moreover, UT performs

better than DT in most conditions, especially for out-of-sample forecasts.

[Please insert Figure 8 here]

6.4 Commodity Returns and Volatility

Our model predicts that commodity tail risk is a better predictor than commodity return

and volatility.11 To compare the effect of tail risk and return or volatility empirically, we regress

bond risk premia on the commodity return factor or the commodity volatility factor, which we

have estimated based on the PLS method

rx
(n)
t+1 = α + βReturnt + ϵt+1, (17)

rx
(n)
t+1 = α + βV olatilityt + ϵt+1, (18)

where rx
(n)
t+1 is the equal-weighted yearly and two- to five-year Treasury bond risk premia,

Returnt and V olatilityt represent the commodity returns factor and the commodity volatility

factor. Individual commodity future return is the average value of the past 6-month daily

returns, and individual commodity future volatility is calculated by

V M
i,t =

2

√∑Dt

d=1(R
D
i,d − R̄i,t)2

n
, (19)

where V M
i,t is the past 6-month daily return volatility of commodity future i in the past 6-month,

RD
i,d is daily return of i in day d and R̄i,t is the average daily return of i in the past 6-month.

11Existing literature has confirmed that commodity return (e.g., Black, Klinkowska, McMillan, and McMillan,
2014; Jacobsen, Marshall, and Visaltanachoti, 2019; Wang, Pan, Liu, and Wu, 2019; Iyke and Ho, 2021; Li, Wu,
and Zhou, 2021) and volatility (e.g., Arouri, Lahiani, and Nguyen, 2011; Creti, Joëts, and Mignon, 2013; Mensi,
Beljid, Boubaker, and Managi, 2013; Christoffersen and Pan, 2018; Xiao and Wang, 2022) are notable for
predicting the future stock market performance. However, similar studies for the bond market are rare.
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Panel A in Table 16 shows that the commodity return factor positively predict in-sample

Treasury bond risk premia across various maturities with an average adjusted R2 of 7.8%.

However, the factor performs poorly in out-of-sample prediction with a negative R̄2
OOS for all

maturities. Similar to the commodity return factor, the commodity volatility factor performs

well only in in-sample regressions, but out-of-sample R2 values are negative and insignificant.

Thus, the commodity tail factors (UT and DT) have a higher in-sample and out-of-sample

R2 and a more substantial predictive power than return or volatility – especially when consid-

ering out-of-sample performances.

[Please insert Table 16 here]

6.5 Stock Tail Risk and Treasury Bond Tail Risk

While our primary focus lies in examining commodity tail risk, we conduct a comparative

analysis of the predictive efficacy of stock tail risk and treasury bond tail risk in forecasting

treasury bond risk premia. Specifically, for stocks, we adhere to the methodology outlined by

Kelly and Jiang (2014) to compute time-varying tail risk, which can be directly estimated from

the cross-section of stock returns utilizing daily CRSP data for NYSE/AMEX/NASDAQ stocks

with share codes 10 and 11. Conversely, for treasury bonds, we calculate the tail risk of 1- to

30-year treasury bond yields as documented in Gürkaynak, Sack, and Wright (2007) with the

equation (3). Subsequently, we utilize the PLS method to forecast future treasury bond risk

premia.

Panel A in Table 17 reveals that the predictive power of the stock tail risk factor in

forecasting future Treasury bond risk premia is limited, with an average adjusted R2 of 0.5% and

R̄2
OOS close to 0. Conversely, the treasury bond tail risk factor exhibits favorable performance

in both in-sample and out-of-sample regressions. However, it is noteworthy that its predictive

capacity remains inferior to that of commodity tail risk factors.

[Please insert Table 17 here]
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6.6 Global Markets

The described link between commodity tail risk and bond excess returns is not only prevalent

in the US market. To show this link, we test the CT’s predictive ability in other G7 countries

in this subsection using the regression

rx
(5)
c,t+1 = α + βTailc,t + εt+1, (20)

where rx
(Avg)
c,t+1 is the five-year excess bond returns on country c at the time t + 1, Tailc,t is

the PLS commodity up- or down-tail factor for country c at the time t, c represents country:

Canada, France, Germany, Italy, Japan and the U.K.12.

Table 18 reports the results of in-sample and out-of-sample predictive regression of excess

bond returns on the CT. The sample covers the period from January 1996 to June 2022.

According to the in-sample results, UT and DT are significant predictors of bond risk premia

according to the NW p-values. The average coefficient is 0.251 for UT and 0.265 for DT,

indicating that the increase in commodity tail factors tend to be followed by a higher bond

premium in the next period. Besides, the adjusted R2 is substantial for most countries. As for

the our-of-sample predictive regression, R2
OOS of UT is significantly positive in all countries,

and for DT, there are five countries generating the significantly positive R2
OOS.

[Please insert Table 18 here]

6.7 Stock Market

Interest rate risk also affects the stock market. To investigate this link, we determine monthly

S&P 500 index excess returns over 1-, 3-, 6-, and 12-month horizons using the standard method-

ology outlined in Goyal and Welch (2008). We use the following predictive regression for stock

returns,

R
(n)
t+1 = α + βTailt + εt+1. (21)

12The bond prices for Canada, Germany, Japan, the United Kingdom are from their central banks. The bond
prices for the other countries are from Bloomberg.
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In this regression, R
(n)
t+1 represents the monthly S&P 500 index excess returns over the n-month

horizon, Tailt denotes either the commodity up-tail factor (UT) or the commodity down-tail

factor (DT), and εt+1 is the error term.

Table 19 shows that UT demonstrates significant and positive predictive power for S&P

500 index excess returns, particularly over longer horizons. DT exhibits significance in pre-

dicting stock excess returns in in-sample regressions. However, its predictive performance is

insignificant in out-of-sample predictions.

[Please insert Table 19 here]

In summary, commodity tail risk also predicts stock excess returns, but the link is not as

clear as for bond excess returns. Moreover, it is only relevant for longer-term horizons.

7 Conclusion

In this paper, we show (theoretically and empirically) that commodity tail risk predicts bond

excess returns. The driving force in this connection is the uncertainty about the central bank’s

reaction to price changes. Even though a rough guidance through the Taylor rule is known,

the predictions are still noisy. This uncertainty affects long-term bonds more than short-term

bonds and results in bond excess returns.

To study this relationship empirically, we construct the commodity tail factor (CT). It

provides a new source of information that is not spanned by the current yield curve. Our study

contributes to the literature that examines the effect of the tail distribution of 24 commodity

returns on bond returns and adds complementary evidence to cross-asset pricing literature.

Our findings also suggest that the commodity tails can significantly predict future economic

fundamentals and exhibit counter-cyclical patterns.
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Table 4: Summary Statistics of Bond Risk Premia

This table displays summary statistics on Treasury bond risk premium. We report the average (Mean),

the maximum value (Max.), the minimum value (Min.), the standard deviation (Std dev), the skewness

and autocorrelations (ρ1 and ρ12 denote the first and twelfth order autocorrelations). The data start

in January 1992 and end in June 2022.

(1) (2) (3) (4) (5) (6) (7)

Mean(%) Max.(%) Min.(%) Std dev.(%) Skewness ρ1 ρ12

Average 1.420 8.436 -5.727 2.699 -0.093 0.928 -0.062

2-year 0.575 3.537 -2.468 1.159 0.186 0.937 0.087

3-year 1.182 7.334 -5.254 2.301 0.004 0.934 0.003

4-year 1.771 10.317 -6.899 3.281 -0.101 0.926 -0.075

5-year 2.151 12.556 -8.389 4.180 -0.156 0.922 -0.124
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Table 5: Summary Statistics of Commodity Tail Factors

This table displays summary statistics on the commodity up-tail factor (UT) and down-tail factor

(DT). In Panel A or B, we respectively report the average (Mean), the maximum value (Max.), the

minimum value (Min.), the standard deviation (Std dev), the skewness and autocorrelations (ρ1 and

ρ12 denote the first and twelfth order autocorrelations) of UT or DT based on bond risk premia across

various maturities. In panel C, we report pairwise correlations of UT and DT. All series start from

January 1992 and end in June 2022.

Panel A: Descriptive Statistics of Up-tail Factor

(1) (2) (3) (4) (5) (6) (7)

Mean(%) Max.(%) Min.(%) Std dev.(%) Skewness ρ1 ρ12

UT (Avg) 1.32 15.98 -9.13 4.98 0.35 0.79 0.12

UT (2) 0.35 7.13 -4.37 2.14 0.40 0.80 0.15

UT (3) 0.94 13.71 -8.02 4.22 0.37 0.79 0.13

UT (4) 1.67 19.62 -11.26 6.12 0.33 0.79 0.12

UT (5) 2.39 25.01 -14.34 7.77 0.32 0.79 0.10

Panel B: Descriptive Statistics of Down-tail Factor

(1) (2) (3) (4) (5) (6) (7)

Mean(%) Max.(%) Min.(%) Std dev.(%) Skewness ρ1 ρ12

DT (Avg) -0.92 18.11 -14.71 5.59 0.35 0.81 0.16

DT (2) -0.57 6.45 -6.64 2.20 0.16 0.82 0.24

DT (3) -1.01 12.85 -13.25 4.62 0.28 0.81 0.21

DT (4) -1.08 23.20 -17.70 6.90 0.36 0.81 0.16

DT (5) -0.95 32.64 -22.10 9.11 0.35 0.80 0.11

Panel C: : Correlations matrix

UT (Avg) UT (2) UT (3) UT (4) UT (5)

DT (Avg) 0.461 0.463 0.459 0.457 0.456

DT (2) 0.422 0.435 0.425 0.417 0.413

DT (3) 0.451 0.459 0.451 0.446 0.444

DT (4) 0.456 0.458 0.453 0.452 0.452

DT (5) 0.464 0.461 0.459 0.461 0.463
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Table 6: Regressions of Bond Risk Premia on Commodity Tail Factors

This table displays the parameter estimates and the adjusted R2 values of the predictive regression:

rx
(n)
t+1 = α+βTailt+ εt+1, where rx

(n)
t+1 denotes the equally-weighted yearly and 2- to 5-year Treasury

bond risk premia, Tailt denotes the commodity up-tail factor (UT) or commodity down-tail factor

(DT) based on the PLS method and εt+1 is an error term. In round brackets, we report the p-value

based on the heteroskedasticity- and autocorrelation-consistent (HAC) standard errors of Newey and

West (1987). Simultaneously, we report the p-values based on the parametric bootstrap approach of

Bauer and Hamilton (2018) in square brackets. ***, **, and * represent significance level at 1%, 5%,

and 10%. The sample period is January 1992 to June 2022.

Panel A: Regressions on Commodity Up-tail Factor

(1) (2) (3) (4) (5)
Average 2-year 3-year 4-year 5-year

Constant 0.010∗∗∗ 0.005∗∗∗ 0.009∗∗∗ 0.013∗∗∗ 0.015∗∗∗

(0.001) (0.000) (0.001) (0.001) (0.003)
UT 0.289∗∗∗ 0.298∗∗∗ 0.297∗∗∗ 0.282∗∗∗ 0.282∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Bootstrap p-value [0.000] [0.000] [0.000] [0.000] [0.000]

R̄2(%) 28.29 30.12 29.47 27.39 27.17

Panel B: Regressions on Commodity Down-tail Factor

(1) (2) (3) (4) (5)
Average 2-year 3-year 4-year 5-year

Constant 0.016∗∗∗ 0.007∗∗∗ 0.014∗∗∗ 0.020∗∗∗ 0.023∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
DT 0.229∗∗∗ 0.271∗∗∗ 0.243∗∗∗ 0.221∗∗∗ 0.206∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Bootstrap p-value [0.000] [0.002] [0.000] [0.000] [0.000]

R̄2(%) 22.18 26.24 23.58 21.44 19.88

Panel C: Regressions on Commodity Up- and Down-tail Factor

(1) (2) (3) (4) (5)
Average 2-year 3-year 4-year 5-year

Constant 0.013∗∗∗ 0.006∗∗∗ 0.011∗∗∗ 0.016∗∗∗ 0.018∗∗∗

(0.002) (0.001) (0.001) (0.002) (0.007)
UT 0.217∗∗∗ 0.218∗∗∗ 0.223∗∗∗ 0.212∗∗∗ 0.216∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Bootstrap p-value [0.000] [0.002] [0.000] [0.000] [0.000]
DT 0.139∗∗∗ 0.178∗∗∗ 0.151∗∗∗ 0.136∗∗∗ 0.120∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Bootstrap p-value [0.000] [0.002] [0.000] [0.000] [0.000]

R̄2 34.7 39.3 36.7 33.8 32.4
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Table 8: Regressions of Bond Risk Premia on Commodity Tails Factors and Competitors

This table displays the parameter estimates and the adjusted R2 values of the following predictive

regressions: (1) “Commodity tails and the CP factors”: rx
(n)
t+1 = α + βTailt + γCPt + εt+1; (2)

“Commodity tails and the LN factors”: rx
(n)
t+1 = α+ βTailt + γLNt + εt+1; and (3) “Commodity tails

and the CPo factors”: rx
(n)
t+1 = α+ βTailt + γCPot + εt+1, where rx

(n)
t+1 denotes the equally-weighted

yearly and 2- to 5-year Treasury bond risk premia, Tailt denotes the commodity up-tail factor (UT) or

commodity down-tail factor (DT) based on the PLS method, CPt, LNt and CPot respectively denote

the CP factor of Cochrane and Piazzesi (2005), the LN factor of Ludvigson and Ng (2009), the CPo

factor of Cieslak and Povala (2015) and εt+1 is an error term. In square brackets, we report the NW

p-value at the left and the bias-corrected (BC) p-values at the right. We also report the gain in R̄2

relative to the model without the commodity tails factors. ***, **, and * represent significance level

at 1%, 5%, and 10% based on the NW p-value. The sample period is January 1992 to June 2022.

Panel A: Regressions of Bond Risk Premia on Commodity Up-Tail Factor and Competitors

(1) (2) (3)

UT and CP factors UT and LN factors UT and CPo factors

UT CP R̄2(%) UT LN R̄2(%) UT CPo R̄2(%)

[p-value] (p-value) (∆R̄2(%) ) [p-value] (p-value) (∆R̄2(%) ) [p-value] (p-value) (∆R̄2(%) )

Average
0.259∗∗∗ 0.530 30.81 0.259∗∗∗ 0.678∗∗∗ 33.50 0.262∗∗∗ 0.488 30.15

[0.000,0.000] (0.188) (20.31) [0.000,0.000] (0.005) (21.32) [0.000,0.001] (0.263) (20.76)

2-year
0.270∗∗∗ 0.223 32.57 0.268∗∗∗ 0.289∗∗∗ 35.28 0.277∗∗∗ 0.189 31.63

[0.000,0.000] (0.180) (22.42) [0.000,0.000] (0.005) (22.95) [0.000,0.000] (0.306) (23.75)

3-year
0.268∗∗∗ 0.455 32.06 0.264∗∗∗ 0.596∗∗∗ 35.02 0.274∗∗∗ 0.382 31.03

[0.000,0.000] (0.172) (21.63) [0.000,0.000] (0.003) (21.94) [0.000,0.000] (0.297) (22.71)

4-year
0.251∗∗∗ 0.659 30.04 0.251∗∗∗ 0.829∗∗∗ 32.67 0.255∗∗∗ 0.610 29.37

[0.000,0.001] (0.182) (19.56) [0.000,0.000] (0.005) (20.42) [0.000,0.001] (0.252) (20.03)

5-year
0.252∗∗∗ 0.782 29.42 0.254∗∗∗ 0.985∗∗ 31.74 0.253∗∗∗ 0.778 29.12

[0.000,0.002] (0.211) (19.42) [0.000,0.000] (0.010) (20.84) [0.000,0.002] (0.243) (19.22)

Panel B: Regressions of Bond Risk Premia on Commodity Down-tail Factor and Competitors

(1) (2) (3)

DT and CP factors DT and LN factors DT and CPo factors

DT CP R̄2(%) DT LN R̄2(%) DT CPo R̄2(%)

[p-value] [p-value] (∆R̄2(%) ) [p-value] [p-value] (∆R̄2(%) ) [p-value] [p-value] (∆R̄2(%))

Average
0.197∗∗∗ 0.556 24.87 0.205∗∗∗ 0.794∗∗∗ 29.60 0.201∗∗∗ 0.537 24.42

[0.000,0.005] (0.146) (14.37) [0.000,0.002] (0.001) (17.42) [0.000,0.007] (0.199) (15.03)

2-year
0.242∗∗∗ 0.244∗ 29.22 0.245∗∗∗ 0.329∗∗∗ 33.11 0.248∗∗∗ 0.203 28.01

[0.000,0.005] (0.085) (19.06) [0.000,0.002] (0.000) (20.78) [0.000,0.005] (0.210) (20.13)

3-year
0.212∗∗∗ 0.489 26.55 0.217∗∗∗ 0.690∗∗∗ 31.28 0.219∗∗∗ 0.419 25.47

[0.000,0.004] (0.113) (16.11) [0.000,0.002] (0.000) (18.20) [0.000,0.005] (0.222) (17.15)

4-year
0.190∗∗∗ 0.680 24.15 0.199∗∗∗ 0.977∗∗∗ 29.06 0.193∗∗∗ 0.659 23.72

[0.000,0.009] (0.152) (13.67) [0.000,0.003] (0.001) (16.81) [0.000,0.010] (0.204) (14.38)

5-year
0.175∗∗∗ 0.828 22.30 0.187∗∗∗ 1.190∗∗∗ 26.85 0.176∗∗∗ 0.888 22.41

[0.000,0.012] (0.179) (12.29) [0.000,0.002] (0.002) (15.94) [0.000,0.013] (0.181) (12.52)
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Table 9: Out-of-sample Regressions Using Commodity Tails Factors

The table displays out-of-sample statistics for the predictive regressions of bond risk premia over

expanding windows. R2
00S denotes the out-of-sample R2 statistic relative to the historical average

model. CW denotes the Clark andWest (2007) out-of-sample statistic, andGW denotes the Giacomini

and White (2006) out-of-sample MSPE-adjusted statistic. Out-of-sample tests are conducted using

recursive estimation forecasts that are generated using all past observations. Forecasts begin T/2 + 1

observations after the start of the sample, where T is the total number of observations. ***, **, and

* represent significance level at 1%, 5%, and 10%. All series end in June 2022.

Panel A: Out-of-sample Regression Using Commodity Up-tail Factor

(1) (2) (3) (4) (5)

Average 2-year 3-year 4-year 5-year

R2
OOS(%) 19.03 17.03 17.41 18.08 19.07

(R̄2
OOS(%)) (18.57) (16.55) (16.94) (17.61) (18.61)

CW 3.583∗∗∗ 3.362∗∗∗ 3.383∗∗∗ 3.583∗∗∗ 3.779∗∗∗

(p-value) (0.000) (0.000) (0.000) (0.000) (0.000)

GW 10.130∗∗∗ 10.021∗∗∗ 9.151∗∗∗ 9.637∗∗∗ 10.702∗∗∗

(p-value) (0.001) (0.002) (0.002) (0.002) (0.001)

Panel B: Out-of-sample Regression Using Commodity Down-tail Factor

(1) (2) (3) (4) (5)

Average 2-year 3-year 4-year 5-year

R2
OOS(%) 5.77 4.61 5.67 5.01 5.36

(R̄2
OOS(%)) (5.23) (4.07) (5.13) (4.47) (4.82)

CW 1.392∗ 1.420∗ 1.375∗ 1.337∗ 1.439∗

(p-value) (0.082) (0.078) (0.085) (0.091) (0.075)

GW 3.866∗∗ 2.585 3.658∗ 3.506∗ 4.048∗∗

(p-value) (0.049) (0.108) (0.056) (0.061) (0.044)
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Table 11: Predictive Regressions of Inflation Based on the Commodity Tail Factors

This table displays parameter estimates and adjusted R2 values with commodity tail factors for re-

gression: Inflationh
t+1 = α + βTailt + εt+1, where Inflationh

t+1 represents the inflation level based

on the CPI index for various horizons h=3, 6, ..., 36 months, Tailt represents the commodity up-tail

factor or down-tail factor extracted from the inflation in PLS method, and εt+1 is an error term.

Following the method of Stock and Watson (1999), we use Iht+h − It to measure the inflation , where

Iht+h = (1200/h)log(CPIt+h/CPIt) and It = (1200)log(CPIt/CPIt−1). We also report the p-values

for the Newey and West (1987) standard errors. ***, **, and * represent significance level at 1%, 5%,

and 10%. All series start in January 1992 and end in June 2022.

Panel A: Predictive Regressions Based on UT

Horizon UT p-value R̄2(%)

6 0.054∗∗ 0.026 5.10
12 0.073∗∗ 0.023 6.99
18 0.085∗∗∗ 0.009 8.17
24 0.089∗∗ 0.011 8.47
30 0.083∗∗ 0.015 8.00
36 0.072∗∗ 0.033 6.84

Panel B: Predictive Regressions Based on DT

Horizon DT p-value R̄2(%)

6 -0.047∗∗∗ 0.001 4.41
12 -0.056∗∗∗ 0.000 5.30
18 -0.065∗∗∗ 0.000 6.27
24 -0.080∗∗∗ 0.000 7.74
30 -0.047∗∗∗ 0.013 4.37
36 -0.047∗∗∗ 0.012 4.37
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Table 12: Predictive Regressions of Interest Rate Uncertainty Based on the Commodity Tail
Factors

This table displays parameter estimates and adjusted R2 values with commodity tail factors for re-

gression: IRUh
t+1 = α+ βTailt + εt+1, where IRUh

t+1 represents the interest uncertainty constructed

based on the federal funds rate for various horizons h=1, 2, ..., 6 months, which is the central interest

rate in the U.S. financial market, Tailt represents the commodity up-tail factor or down-tail factor

extracted from IU in PLS method, and εt+1 is an error term. Here, we use the volatility to measure

interest uncertainty. p-values based on the Newey and West (1987) standard errors are reported, and

***, **, and * represent significance level at 1%, 5%, and 10%. All series start in January 1992 and

end in June 2022.

Panel A: Predictive Regressions Based on UT

Horizon UT p-value R̄2(%)

1 0.127∗∗∗ (0.000) 12.50

2 0.104∗∗∗ (0.000) 10.88

3 0.101∗∗∗ (0.000) 10.91

4 0.119∗∗∗ (0.000) 12.82

5 0.139∗∗∗ (0.000) 14.84

6 0.153∗∗∗ (0.000) 16.28

Panel B: Predictive Regressions Based on DT

Horizon DT p-value R̄2(%)

1 0.216∗∗∗ (0.000) 21.20

2 0.236∗∗∗ (0.000) 23.46

3 0.229∗∗∗ (0.000) 22.95

4 0.239∗∗∗ (0.000) 23.94

5 0.241∗∗∗ (0.000) 24.03

6 0.244∗∗∗ (0.000) 23.41
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Table 13: Predictive Regressions of Macro Variables Based on the Commodity Tail Factors

This table displays parameter estimates and adjusted R2 values with commodity tails factors for

regression: MacroV ariablet+1 = α+ωTail
(avg)
t + ϵt+1, where MacroV ariablet+1 represents the GDP

growth (GDP Growth), the industrial production growth (IPG), the nonfarm payroll growth (Payroll

Growth), and the unemployment rate (Unemp Rate) in time t+1, Tail
(avg)
t represents the commodity

up- or down-tail factor extracted from equal-weighted yearly bond risk premia in PLS method, and

ϵt+1 is an error term. We also report the p-values for the Newey and West (1987) standard errors

in the brackets. ***, **, and * represent significance level at 1%, 5%, and 10%. All series start in

January 1992 and end in June 2022.

Panel A: Predictive Regressions Based on UT

UT p-value R̄2(%)

GDP Growth -0.130∗∗ 0.003 4.59

IPG -0.213∗∗∗ (0.000) 5.07

Payroll Growth -0.124∗∗∗ (0.000) 6.00

Unemp Rate 1.293∗∗∗ (0.000) 6.54

Panel B: Predictive Regressions Based on DT

DT p-value R̄2(%)

GDP Growth -0.072∗ (0.052) 1.23

IPG -0.105∗∗ (0.017) 1.36

Payroll Growth -0.114∗∗∗ (0.000) 6.46

Unemp Rate 1.452∗∗∗ (0.000) 10.57
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Table 14: The Results of Predictions within Subsamples

This table displays parameter estimates and adjusted R2 values for predictive regression: rx
(Avg)
t+1 =

α + βTailt + εt+i, where rx
(Avg)
t+1 is equal-weighted yearly bond risk premia, Tailt is the current

commodity tail factors (UT or DT), and εt+1 is an error term. Column (1) covers the period of 2000

to 2022, column (2) covers the period of 2005 to 2022, and column (3) covers the period of 2010 to

2022. In round brackets, we report the p-value based on the heteroskedasticity- and autocorrelation-

consistent (HAC) standard errors of Newey and West (1987). Simultaneously, we report the p-values

based on the parametric bootstrap approach of Bauer and Hamilton (2018) in square brackets. ***,

**, and * represent significance level at 1%, 5%, and 10%.

Panel A: Predictive Regressions Based on Commodity Up-tail Factor

(1) (2) (3)
2000-2022 2005-2022 2010-2022

Constant 0.012∗∗∗ 0.008∗∗ 0.010∗∗∗

(0.000) (0.012) (0.005)
UT 0.420∗∗∗ 0.387∗∗∗ 0.343∗∗∗

(0.000) (0.000) (0.000)
Bootstrap p-value [0.000] [0.000] [0.000]
R̄2 42.62 37.21 33.82

R̄2
OOS 32.38 12.24 2.05

CW 3.638 3.174 1.670

Panel B: Predictive Regressions Based on Commodity Down-tail Factor

(1) (2) (3)
2000-2022 2005-2022 2010-2022

Constant 0.022∗∗∗ 0.019∗∗∗ 0.017∗∗∗

(0.000) (0.000) (0.005)
DT 0.340∗∗∗ 0.335∗∗∗ 0.486∗∗∗

(0.000) (0.000) (0.000)
Bootstrap p-value [0.000] [0.000] [0.000]
R̄2 33.78 32.92 48.25

R̄2
OOS 2.97 -0.91 2.93

CW 1.790 1.474 1.851
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Table 16: Regressions of Treasury Bond Risk Premia on Lagged Commodity Return Factor
or Commodity Volatility Factor

This table displays the parameter estimates and the adjusted R2 values of the following predictive

regression: Pane A: “Commodity returns factor”: rx
(n)
t+1 = α + βReturnt + ϵt+1; and Panel B: “Com-

modity volatility factor”: rx
(n)
t+1 = α+βV olatilityt+ϵt+1, where rx

(n)
t+1 is the equal-weighted yearly and

two- to five-year Treasury bond risk premia, Returnt and V olatilityt represent the commodity returns

factor and the commodity volatility factor, which are based on 24 commodity futures daily returns

through the PLS method. Each commodity future return is defined as the average value of the past

6-month daily returns, and each commodity future volatility is calculated by V M
i,t =

2

√∑Dt
d=1(R

D
i,d−R̄i,t)2

n ,

where V M
i,t is the past 6-month daily return volatility of commodity future i in the past 6-month, RD

i,d is

daily return of i in day d and R̄i,t is the average daily return of i in the past 6-month. We respectively

report the coefficients, the Newey-West p-values (in parentheses), the adjusted in-sample R2 (R̄2) and

out-of-sample R2 (R2
OOS). ***, **, and * represent significance level at 1%, 5%, and 10%. All series

start in January 1992 and end in June 2022.

Panel A: Predictive Regressions Based on Commodity Return Factor

Average 2-year 3-year 4-year 5-year

Constant 0.015∗∗∗ 0.006∗∗∗ 0.013∗∗∗ 0.019∗∗∗ 0.023∗∗∗

(0.000) (0.001) (0.000) (0.000) (0.000)
Return 0.069 ∗∗ 0.109∗∗∗ 0.101∗∗∗ 0.070∗∗ 0.064∗∗∗

(0.012) (0.002) (0.007) (0.010) (0.007)
R̄2(%) 6.47 10.38 9.63 6.56 5.96

R̄2
OOS(%) -2.61 -0.26 -3.23 -2.43 -0.23

Panel B: Predictive Regressions Based on Commodity Volatility Factor

Average 2-year 3-year 4-year 5-year

Constant 0.015∗∗∗ 0.005∗∗∗ 0.012∗∗∗ 0.018∗∗∗ 0.023∗∗∗

(0.001) (0.006) (0.001) (0.000) (0.000)
Volatility 0.038∗∗ 0.050 0.039∗ 0.039∗∗ 0.041∗∗∗

(0.020) (0.106) (0.059) (0.020) (0.006)
R̄2(%) 3.10 4.70 3.35 3.10 3.22

R̄2
OOS(%) -70.71 -109.21 -92.39 -65.09 -51.96
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Table 17: Regressions of Treasury Bond Risk Premia on Lagged Stock Tail Risk or Treasury
Bond Tail Risk

This table displays the parameter estimates and the adjusted R2 values of the following predictive

regression: Pane A: “Stock tail risk factor”: rx
(n)
t+1 = α+βSTt+ϵt+1; and Panel B: “Treasury bond tail

risk factor”: rx
(n)
t+1 = α+ βBTt + ϵt+1, where rx

(n)
t+1 is the equal-weighted yearly and two- to five-year

Treasury bond risk premia, STt and BTt represent the stock tail risk factor and the treasury bond

tail risk factor. The stock tail risk factor can be directly estimated from the cross-section of stock

returns utilizing daily CRSP data for NYSE/AMEX/NASDAQ stocks with share codes 10 and 11, as

described by Kelly and Jiang (2014). Additionally, the tail risk associated with each Treasury bond

yield is computed as outlined in equation 3, and then we employ the PLS method to amalgamate

the tail risk of 1- to 30-year Treasury bond yields to construct the treasury bond tail risk factor. We

respectively report the coefficients, the Newey-West p-values (in parentheses), the adjusted in-sample

R2 (R̄2) and out-of-sample R2 (R2
OOS). ***, **, and * represent significance level at 1%, 5%, and

10%. All series start in January 1992 and end in June 2022.

Panel A: Predictive Regressions Based on Stock Tail Risk Factor

Average 2-year 3-year 4-year 5-year

Constant 0.055 0.024 0.049 0.061 0.086
(0.361) (0.433) (0.381) (0.397) (0.319)

ST -0.100 -0.045 -0.091 -0.107 -0.158
(0.472) (0.524) (0.481) (0.523) (0.430)

R̄2(%) 0.51 0.58 0.61 0.33 0.55

R̄2
OOS(%) 0.11 -1.30 -0.74 0.02 0.71

Panel B: Predictive Regressions Based on Treasury Bond Tail Risk Factor

Average 2-year 3-year 4-year 5-year

Constant 0.016∗∗∗ 0.007∗∗∗ 0.014∗∗∗ 0.020∗∗∗ 0.024∗∗∗

(0.001) (0.000) (0.000) (0.000) (0.000)
BT 0.055∗ 0.062∗∗ 0.064∗∗ 0.070∗∗ 0.066∗∗

(0.059) (0.028) (0.022) (0.015) (0.021)
R̄2(%) 6.36 5.21 5.94 6.17 6.73

R̄2
OOS(%) 6.55 8.29 7.07 6.05 5.53
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Table 18: Predictive Regression with Commodity Tails across Different Markets

This table displays the parameter estimates and the adjusted R2 values of the predictive regression:

rx
(5)
t+1 = α+βTailt+εt+1, where rx

(5)
t+1 denotes the five-year Treasury bond risk premia, Tailt denotes

the commodity up-tail factor (UT) or commodity down-tail factor (DT) based on the PLS method

and εt+1 is an error term. We respectively report the coefficients, p-values, the adjusted in-sample R2

(R̄2) and out-of-sample R2 (R2
OOS). ***, **, and * represent significance level at 1%, 5%, and 10%

according to the NW p-value. All series start in January 1996 and end in June 2022.

Panel A: Predictive Regressions Based on Commodity Up-tail Factor

Constant p-value UT p-value R̄2 R2
OOS

Canada 0.015∗∗∗ (0.000) 0.312∗∗∗ (0.000) 32.33 28.59

France 0.017∗∗∗ (0.000) 0.204∗∗∗ (0.000) 20.07 8.52

Germany 0.016∗∗∗ (0.000) 0.221∗∗∗ (0.000) 21.38 15.03

Italy 0.033∗∗∗ (0.000) 0.292∗∗∗ (0.000) 29.47 19.49

Japan 0.014∗∗∗ (0.000) 0.299∗∗∗ (0.000) 28.55 11.51

U.K. 0.013∗∗∗ (0.001) 0.180∗∗∗ (0.000) 16.15 11.54

Panel B: Predictive Regressions Based on Commodity Down-tail Factor

Constant p-value DT p-value R̄2(%) R2
OOS(%)

Canada 0.022∗∗∗ (0.000) 0.326∗∗∗ (0.000) 32.03 23.04

France 0.018∗∗∗ (0.000) 0.220∗∗∗ (0.000) 21.45 -0.95

Germany 0.019∗∗∗ (0.000) 0.218∗∗∗ (0.000) 21.32 0.36

Italy 0.025∗∗∗ (0.000) 0.278∗∗∗ (0.000) 27.31 15.81

Japan 0.012∗∗∗ (0.000) 0.395∗∗∗ (0.000) 38.47 2.21

U.K. 0.015∗∗∗ (0.002) 0.152∗∗∗ (0.000) 14.06 10.30
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Table 19: Regressions of S&P 500 Index Excess Returns on Commodity Tail Factors

This table displays the parameter estimates and the adjusted R2 values of the predictive regression:

R
(n)
t+1 = α+ βTailt + εt+1, where R

(n)
t+1 denotes 1-, 3-, 6-, and 12-month S&P 500 index excess returns

at time t + 1, Tailt denotes the commodity up-tail factor (UT) or commodity down-tail factor (DT)

based on the PLS method and εt+1 is an error term. We respectively report the coefficients, p-values,

the adjusted in-sample R2 (R̄2) and out-of-sample R2 (R2
OOS). ***, **, and * represent significance

level at 1%, 5%, and 10% according to the NW p-value. All series start in January 1992 and end in

June 2022.

Panel A: Regressions on Commodity Up-tail Factor

(1) (2) (3) (4)

R(1) R(3) R(6) R(12)

Constant 0.006∗∗∗ 0.018∗∗∗ 0.039∗∗∗ 0.074∗∗∗

(0.002) (0.000) (0.000) (0.000)
UT 0.056∗∗∗ 0.113∗∗∗ 0.182∗∗∗ 0.263∗∗∗

(0.000) (0.000) (0.000) (0.000)
R̄2(%) 5.41 11.36 17.96 25.63

R2
OOS(%) -3.99 0.79 0.79 23.20

Panel B: Regressions on Commodity Down-tail Factor

(1) (2) (3) (4)

R(1) R(3) R(6) R(12)

Constant 0.002 0.008 0.028 0.063
(0.369) (0.255) (0.018) (0.005)

DT 0.032 0.084 0.164 0.181
(0.000) (0.000) (0.000) (0.000)

R̄2(%) 2.94 8.14 16.28 18.05

R2
OOS(%) -3.36 -6.14 -6.14 -2.65

53



Figure 2: Impact of Tail Risk on Bond Risk Premia.

The figures plot the impact of tail risk on bond premia. We measure tail risk through the probability

of an extreme uptail event πu and/or an extreme downtail event πd. Subfigure a) plots the impact

an increase in the risk of both tails together. An increase in tail risk leads to an increase in bond

excess returns. Subfigure b) plots the impact of tail risk in the upper tail, measured through πu,

and Subfigure c) considers the downtail risk, measured throguh πd. Subfigure d) shows the impact

of an increase in inflation volatility. For small or medium levels of volatility increases, the impact of

volatility is smaller than the impact of tail risk. Only when the volatility increases to a level at which

the volatility itself generates extreme realisations, volatility matters.
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Figure 3: Time Series of Treasury Bond Risk Premia

This figure displays monthly bond risk premia (excess bond return) with equal-weighted yearly, two-,

three-, four-, five-year maturities, and the shaded bars indicate economic recessions. Recession dates

are from NBER website (https://www.nber.org/). All series end in June 2022.
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Figure 4: Time Series and Correlations of Constructed Commodity Tail Factors

This figure displays time series and correlations of commodity up-tail factor (UT) and commod-

ity down-tail factor (DT) constructed by the partial least square (PLS) method based on equal-

weighted yearly bond risk premia, and the shaded bars indicate economic recessions. Recession dates

are from NBER website. In Panel A, we plot time series of commodity tail factors, and rolling

UT − LT correlations using 3-year window are shown in Panel B. All series end in June 2022.

Panel A: Time Series of Constructed Commodity Tail Factors

Panel B: Correlations of Constructed Commodity Tail Factors
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Figure 5: Difference in Cumulative Squared Error for Commodity Tails Factors

The figures plot the difference in cumulative squared predictive error between the predictive model

using the commodity up-tail factor (UT) or commodity down-tail factor (DT) as the predictor and

the benchmark model using historical average value. The out-of-sample period is from October 2007

to June 2022.

Panel A: DCSPE for Commodity Up-tail Factor

Panel B: DCSPE for Commodity Down-tail Factor
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Figure 6: Difference in Cumulative Squared Error with and without Commodity Tail Factors

The figures plot the difference in cumulative squared predictive error with or without using the com-

modity up-tail factor (UT) or commodity down-tail factor (DT) as one predictor. The three PCs, CP,

LN, CPo are the first three PCs of current yields, the Cochrane and Piazzesi (2005) factor, the Ludvig-

son and Ng (2009) factor, and the Cieslak and Povala (2015) factor, respectively. The out-of-sample

period is from October 2007 to June 2022.

Panel A: DCSPE for Commodity Up-tail Factor

Panel B: DCSPE for Commodity Down-tail Factor
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Figure 7: Commodity Importance for Bond Risk Premia Prediction

The figures present the importance of the up-tail and down-tail risk of 24 commodity futures returns

for equal-weighted yearly bond risk premia prediction. At every window of the out-of-sample PLS

regression, we can obtain a group of covariance between individual commodity up- or down-tail risk

and bond excess returns, which represents the weight of given commodity tail. Here, we define the

importance as the average value of the weights. In the left (right) figure, we show the importance of

24 commodity up (down) tails, and the out-of-sample period is from October 2007 to June 2022.

Panel A: Importance for Commodity Up Tail Risk Panel B: Importance for Commodity Down Tail Risk
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Figure 8: In-sample and Out-of-sample R2 for Different Moving Windows

The figures display the explanatory power of the commodity tail factors (UT and DT) when it is

constructed using different moving window lengths. It reports the in-sample and out-of-sample ad-

justed R2 of the regression equation rx
(Avg)
t+1 = α + βTail

(L)
t + ϵt+1, where rx

(Avg)
t+1 is the monthly

equal-weighted yearly bond risk premia and Tail
(L)
t is the commodity tail factors constructed using

window length L. The window size ranges between 2 months and 60 months, and the step size is 2

months. All series end in June 2022.
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Table 2: Regressions of Bond Risk Premia on the Existing Predictors Alone

This table displays the parameter estimates and the adjusted R2 values of the predictive regression:

rx
(n)
t+1 = α + γFt + εt+1, where rx

(n)
t+1 denotes 2- to 5-year Treasury bond risk premia, Ft denotes the

CP factor, the LN factor, and the CPo factor and εt+1 is an error term. In round brackets, we report

the p-value based on the heteroskedasticity- and autocorrelation-consistent (HAC) standard errors of

Newey and West (1987). ***, **, and * represent significance level at 1%, 5%, and 10% based on the

Newey and West (1987) p-value. The sample period is January 1992 to June 2022.

CP R̄2 LN R̄2 CPo R̄2

2-year 0.422∗∗ 10.16 0.432∗∗∗ 12.33 0.394∗∗ 7.88

(0.012) (0.001) (0.029)

3-year 0.850∗∗ 10.44 0.883∗∗∗ 13.08 0.804∗∗ 8.32

(0.012) (0.000) (0.026)

4-year 1.215∗∗ 10.48 1.219∗∗∗ 12.25 1.213∗∗ 9.34

(0.010) (0.001) (0.017)

5-year 1.513∗∗∗ 10.00 1.467∗∗∗ 10.90 1.589∗∗ 9.90

(0.009) (0.001) (0.010)
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B Derivation of Et[βt+1] and V art(βt+1)

Thus, the expectation of the next period (t+ 1) discount factor is

Et[βt+1 −m · 0.98− (1−m) · βt]

= E
[
(− (it+1 − 2%) · γ + ϵt+1) · 1it+1<2%−α

]
+ E

[
(− (it+1 − 2%) · γ + ϵt+1) · 1it+1>2%+α

]
= Et

[
− (it+1 − 2%) · γ · 1it+1<2%−α

]
+ E

[
− (it+1 − 2%) · γ · 1it+1>2%+α

]
=

∑
i∈{N,U,D,B}

πi · T (µi, σi)

The variance of the next period (t+ 1) discount factor is

V ar(βt+1) = V ar(βt+1 −m · 0.98− (1−m) · βt)

= E[(βt+1 −m · 0.98− (1−m) · βt)
2]− E[βt+1 −m · 0.98− (1−m) · βt]

2

The second term is already determined in the above equations. So, we are left with the first

expectation term.

E[(βt+1 −m · 0.98− (1−m) · βt)
2]

= E
[
(− (it+1 − 2%) · γ + ϵt+1)

2 · 1it+1<2%−α

]
+ E

[
(− (it+1 − 2%) · γ + ϵt+1)

2 · 1it+1>2%+α

]
= E

[
(it+1 − 2%)2 · γ2 · 1it+1<2%−α

]
+ E

[
(it+1 − 2%)2 · γ2 · 1it+1>2%+α

]
+ σ2

ϵ · P (|it+1 − 2%| > α

=
∑

i∈{N,U,D,B}

πi · S (µi, σi) + σ2
ϵ (1− P (|it+1 − 2%| < α))

Derivation of T (µ, σ)

For downward deviations of the inflation rate, we get the following integral:

− γ

∫ 2%−α

−∞
(I − 2%) · 1√

2πσ
exp

(
−1

2

(
I − µ

σ

)2
)
dI

= −γ

∫ 2%−α−µ
σ

−∞
(Ĩ · σ + µ− 2%) · 1√

2π
exp

(
−1

2
Ĩ2
)
dĨ

= γσ

[
1√
2π

exp

(
−1

2
Ĩ2
)] 2%−α−µ

σ

−∞
− γ (µ− 2%)Φ

(
2%− α− µ

σ

)

= γσ
1√
2π

exp

(
−1

2

(
2%− α− µ

σ

)2
)

− γ (µ− 2%)Φ

(
2%− α− µ

σ

)
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For upward deviations of the inflation rate, we obtain:

− γ

∫ ∞

2%+α

(I − 2%) · 1√
2πσ

exp

(
−1

2

(
I − µ

σ

)2
)
dI

= −γσ
1√
2π

exp

(
−1

2

(
2% + α− µ

σ

)2
)

− γ (µ− 2%)

(
1− Φ

(
2% + α− µ

σ

))
Thus,

T (µ, σ) = −γσ
1√
2π

(
exp

(
−1

2

(
2% + α− µ

σ

)2
)

− exp

(
−1

2

(
2%− α− µ

σ

)2
))

− γ (µ− 2%)

(
1− Φ

(
2% + α− µ

σ

)
+ Φ

(
2%− α− µ

σ

))
Derivation of the expression for S(µ, σ)

γ2

∫ 2%−α

−∞
(I − 2%)2 · 1√

2πσ
exp

(
−1

2

(
I − µ

σ

)2
)
dI

Using the rule of substitution with Ĩ = I−µ
σ
, we obtain

= γ2

∫ 2%−α−µ
σ

−∞

(
Ĩ · σ + µ− 2%

)2 1√
2π

exp

(
−1

2
Ĩ2
)
dĨ

= γ2σ2

∫ ∞

−2%+α+µ
σ

Ĩ2
1√
2π

exp

(
−1

2
Ĩ2
)
dĨ

+γ2 ·2σ·(µ−2%)

∫ 2%−α−µ
σ

−∞
Ĩ

1√
2π

exp

(
−1

2
Ĩ2
)
dĨ+γ2 ·(µ− 2%)2

∫ 2%−α−µ
σ

−∞

1√
2π

exp

(
−1

2
Ĩ2
)
dĨ

=
γ2

2
σ2

∫ ∞

−2%+α+µ
σ

Ĩ
1√
2π

exp

(
−1

2
Ĩ2
)
2ĨdĨ

− γ2 · 2σ · (µ− 2%)
1√
2π

exp

(
−1

2

(
2%− α− µ

σ

)2
)

+ γ2 · (µ− 2%)2Φ

(
2%− α− µ

σ

)
We distinguish two cases:

Case 1: α + µ− 2% ≥ 0

=
γ2

2
σ2

∫ ∞

(α+µ−2%)2

σ2

1

23/2Γ(3/2)
x1/2 exp

(
−1

2
x

)
dx

−γ2 · 2σ · (µ− 2%)
1√
2π

exp

(
−1

2

(
2%− α− µ

σ

)2
)

+ γ2 · (µ− 2%)2Φ

(
2%− α− µ

σ

)
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=
γ2

2
σ2

(
1− C3

(
(2%− α− µ)2

σ2

))

−γ2 · 2σ · (µ− 2%)
1√
2π

exp

(
−1

2

(
2%− α− µ

σ

)2
)

+ γ2 · (µ− 2%)2Φ

(
2%− α− µ

σ

)
Case 2: α + µ− 2% ≤ 0

=
γ2

2
σ2

1 +

∫ (α+µ−2%)2

σ2

0

1

23/2Γ(3/2)
x1/2 exp

(
−1

2
x

)
dx


−γ2 · 2σ · (µ− 2%)

1√
2π

exp

(
−1

2

(
2%− α− µ

σ

)2
)

+ γ2 · (µ− 2%)2Φ

(
2%− α− µ

σ

)

=
γ2

2
σ2

(
1 + C3

(
(2%− α− µ)2

σ2

))

−γ2 · 2σ · (µ− 2%)
1√
2π

exp

(
−1

2

(
2%− α− µ

σ

)2
)

+ γ2 · (µ− 2%)2Φ

(
2%− α− µ

σ

)
Following a similar derivation, we get

γ2
∫ ∞

2%+α
(I − 2%)2 · 1√

2πσ
exp

(
−1

2

(
I − µ

σ

)2
)
dI

Case A: α− µ+ 2% ≥ 0

=
γ2

2
σ2

(
1− C3

(
(2% + α− µ)2

σ2

))

+γ2 · 2σ · (µ− 2%)
1√
2π

exp

(
−1

2

(
2% + α− µ

σ

)2
)

+ γ2 · (µ− 2%)2
(
1− Φ

(
2% + α− µ

σ

))
,

Case B: α− µ+ 2% ≤ 0

=
γ2

2
σ2

(
1 + C3

(
(2% + α− µ)2

σ2

))

+γ2 · 2σ · (µ− 2%)
1√
2π

exp

(
−1

2

(
2% + α− µ

σ

)2
)

+ γ2 · (µ− 2%)2
(
1− Φ

(
2% + α− µ

σ

))
,

with C3 being the CDF of a Chi-squared distribution with three degrees of freedom.

Taking both together, we get

S(µ, σ) =
γ2

2
σ2

(
2 +

(
1− 2 · 1α+µ−2%≥0

)
C3

(
(2%− α− µ)2

σ2

)
+
(
1− 2 · 1α−µ+2%≥0

)
C3

(
(2% + α− µ)2

σ2

))

−γ2 · 2σ · (µ− 2%)
1√
2π

[
exp

(
−1

2

(
2%− α− µ

σ

)2
)

− exp

(
−1

2

(
2% + α− µ

σ

)2
)]
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+γ2 · (µ− 2%)2
(
1− Φ

(
2% + α− µ

σ

)
+Φ

(
2%− α− µ

σ

))
.

C Construction of the Variables

C.1 Construction of the First Three or Five PCs

We consider a (T ×M) data matrix X of M yields and sample size T . We construct the first three

principal components as follows:

1. We calculate the sample covariance matrix of the given data:

Σ(M×M) = Cov(X).

2. We perform an eigenvalue decomposition of the covariance matrix Σ to calculate the eigenvalues

D and the corresponding eigenvectors W :

Σ = W D W−1,

where D is the diagonal matrix containing the eigenvalues (sorted in descending order) on the

main diagonal, and W is the matrix whose columns are the corresponding eigenvectors.

3. We denote the first three or five columns of W as V(M×3) or V(M×5). The first three or five

principal components are obtained as:

[PC1 PC2 PC3] = X V,

[PC1 PC2 PC3 PC4 PC5] = X V. (1)

C.2 Construction of the macro-yields model of Moench and Soofi-Siavash

(2022)

We construct the Macroeconomic factors as in Moench and Soofi-Siavash (2022):

1. We estimate the yield curve factors as principal components of Gürkaynak, Sack, and Wright

(2007) Treasury yields based on Appendices C.1.

2. We regress 135 macroeconomic series on the five yield curve factors:

Macroi = γ0 + γ
′
PC + u,

whereMacroi represents the ith macroeconomic series, PC represents the five yield curve factors,

and u is the residual.

3. We extract eight principal components from the residuals based on the dynamic factor models

(DFM) method described by Stock and Watson (2016), the eight macroeconomic factors are

defined as
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[M1 M2 M3 M4 M5 M6 M7 M8]. (2)

C.3 Construction of the CP Factor

We construct the CP factor as in Cochrane and Piazzesi (2005):

1. We define the forward rate at time t for the period between time t+ n− 1 and t+ n as:

f
(n)
t ≡ p

(n−1)
t − p

(n)
t .

2. We regress the average excess log return across the maturity spectrum on the one-year yield

and the four subsequent one-year forward rates ft ≡ (y
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t )′:

rx
(n)
t+1 = γ0 + γ′ft + ut+1.

This regression implicitly assumes that the same function of forward rates predicts excess bond

returns at all maturities.

3. We compute the CP factor as:

CPt = γ̂0 + γ̂′ft, (3)

i.e., the predicted part of the regression, where γ̂0 and γ̂′ denote parameter estimates.

C.4 Construction of the LN Factor

We construct the LN factor as in Ludvigson and Ng (2009):

1. We estimate the first eight principal components of 132 monthly economic series, and define the

six-factor subset as

Ft = (F̂1t F̂
3
1t F̂2t F̂4t F̂8t)

′,

to minimize the BIC criterion. Among them, F̂ 3
1t is the cubic function in the first estimated

factor.

2. We regress the average excess log return across the maturity spectrum on the six-factor subset:

rx
(n)
t+1 = γ0 + γ′Ft + ut+1.

3. We compute the LN factor as:

LNt = γ̂0 + γ̂′Ft, (4)

i.e., the predicted part of the regression, where γ̂0 and γ̂′ denote parameter estimates.

C.5 Construction of the CPo Factor

We construct the CPo factor as in Cieslak and Povala (2015):
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1. We construct a discounted moving average of past CPI inflation:

τt,CPI = (1− v)

t−1∑
i=0

viπt−i,

where τt,CPI denotes the trend inflation, which is calculated by the equation (1), and v equals

0.987 (Cieslak and Povala, 2015), and π is the annual core CPI growth rate.

2. We regress the average excess log return across the maturity spectrum on the average yield,

1-year yield, and trend inflation:

rx
(n)
t+1 = d0 + d1yt + d2y

(1)
t + d3τt,CPI + ut+1,

3. We compute the CPo factor as:

CPot = d̂0 + d̂1yt + d̂2y
(1)
t + d̂3τt,CPI , (5)

i.e., the predicted part of the regression, where d̂0, d̂1 and d̂2 denote parameter estimates.
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