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1 Introduction

U.S. monetary policy shocks have a large impact on asset prices across the world (among others,

Wongswan, 2006, Wongswan, 2009, Ehrmann and Fratzscher, 2009, Ammer et al., 2010, Miranda-

Agrippino and Rey, 2020). Understanding the economic channels through which these shocks

propagate is crucial for both policymakers assessing the potential impact of their actions and asset

managers considering the international diversification of their portfolios.

We study the transmission channels of U.S. monetary policy shocks in global equity markets,

which represent the largest asset class worldwide. To motivate our empirical analysis, we introduce

a model, where the real effects of the monetary policy arise through the combination of the cash-in-

advance constraint, where consumers must have immediate cash to purchase goods, and the limited

financial markets participation (e.g., Grossman and Weiss, 1983), which allows us to generate

realistic real and nominal rate dynamics. International transmission occurs through coordinated

monetary policies among central banks and production networks in which countries incorporate

each other’s goods into their domestic production processes.

Our model incorporates three channels through which U.S. monetary policy shocks propagate.

First, there is the interest rate effect: for example, an expansionary U.S. monetary policy surprise

would likely lead to a similar expansionary move by the Bank of Canada, decreasing the risk-free

rate part of the interest rate by which future cash flows are discounted and, thus, increasing equity

valuations. Second, there is the direct cash flow effect, where an expansionary policy by the Bank

of Canada would stimulate domestic demand for Canadian goods. Third, there is the network cash

flow effect. The expansionary monetary policies in other countries results in a greater demand for

their local goods. Consequently, this higher demand for local goods triggers an increased demand
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for Canadian goods, given that Canadian products are used as intermediate inputs in the production

of domestic goods in foreign markets. By solving the model, we obtain a simultaneous spatial

panel data system, which we directly employ for estimation purposes. As the model is solved via

log-linearization and investors exhibit risk neutrality, we assign the residual effect—once the three

aforementioned effects are accounted for—to the component of the discount rate associated with

the risk premium.

Empirically, we investigate spillover effects on aggregate stock market indices across 37 coun-

tries from 2007 to 2018. We utilize the methodology of Lu (2022), employing a simultaneous

spatial panel data model with interactive fixed effects to decompose the impact of monetary policy

shocks into three components. Long-term government bonds are used to isolate the interest rate

effects. Our findings reveal that approximately 50% of the U.S. monetary policy shock impact is

attributed to risk premium effects, 28% to direct effects, and 11% to each of network and interest

rate effects.

Our primary contribution lies in the examination of the transmission of monetary policy shocks

in global financial markets. Theoretically, our model, which utilizes segmented market participa-

tion to produce real effects of monetary policy, generates more realistic interest rate dynamics

compared to existing models like di Giovanni and Hale (2022), which rely on wage rigidities to

achieve similar effects.

Empirically, earlier studies (Ehrmann and Fratzscher, 2009, Wongswan, 2009, Ammer et al.,

2010) primarily used single spatial regressions to assess the extent of the influence of US monetary

policy on international equity markets. However, this approach lacked the ability to decompose

the impact of shocks into different economic components, which is a key aspect of our study. Re-

cently, di Giovanni and Hale (2022) studied the transmission of U.S. monetary policy shocks using
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a single spatial panel data model that accounts for both direct and network effects. They found

that network effects play a more important role than direct effects. We build on their seminal work

along two dimensions. First, the analysis of di Giovanni and Hale (2022) omits interest rate and

risk premium effects, which we find statistically and economically significant. Second, their anal-

ysis may be vulnerable to omitted variable bias (something they openly acknowledge in Section

IV.F of their work). While it is possible to mitigate these concerns by including control variables,

it is not always clear which variables to incorporate, and many of them may be unobservable. We

aim to address this problem by introducing interactive fixed effects, as suggested by Bai (2009).

Interactive fixed effects represent unobservable common shocks and their heterogeneous impacts

on the international cross-section of the US monetary policy shock responses. They can be corre-

lated with the regressors and are estimated to optimally fit the unexplained common cross-sectional

variation in the data. In our setting they can potentially control for unobserved variables such as

the risk-aversion or other variables affecting the risk premium part of the discount rate. We find

that incorporating interactive fixed effects greatly reduces the relative impact of the network effect

while substantially increasing the significance of the direct effect, thereby reversing their relative

importance.

Our work is also closely related to broader strands of the literature. First, we contribute to the

research on the international network effects of monetary policy shocks. While studies such as Kim

(2001) and Brauning and Sheremirov (2019) explore network effects of the U.S. monetary policy

on real economic activities abroad, they do not study financial markets. Second, our paper is re-

lated to the literature on the channels through which monetary policy influences financial markets.

Although this literature is extensive (among many others, Bernanke and Kuttner, 2005, Gurkaynak

et al., 2005, Nakamura and Steinsson, 2018, Ozdagli and Weber, 2019, Nagel and Xu, 2024), it
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predominantly concentrates on the U.S. context alone. Finally, in terms of applied econometrics,

our research introduces a novel economic application for simultaneous spatial panel data models.

These models have been previously employed in urban economics (Jeanty et al., 2010, Baltagi and

Bresson, 2011), health economics (Ho and Hite, 2008), economic growth (Gebremariam et al.,

2011), and fiscal policy analysis (Allers and Elhorst, 2011; Hauptmeier et al., 2012).

2 Network Model

Our model comprises three essential components. First, it incorporates a network production

mechanism based on Ozdagli and Weber (2019), wherein each country produces its own goods.

These goods serve as intermediate inputs in the production processes of other countries, thereby

generating network cash flow effects. Second, the model incorporates limited participation in the

bond market by the population. This feature enables the realistic depiction of interest rate dy-

namics in response to monetary policy shocks. Finally, the model encompasses monetary policy

coordination among countries, resulting in the generation of both direct and network cash flow

effects.

2.1 Production Sector and Households

Production. There are N countries. Each country i has one firm which at time t produces good

yit following a Cobb-Douglas production function

yit = lςiit
(
ΠN
k=1x

ωik
ikt

)τi
,
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where lit represents labor and xikt represents the intermediate input imported from country k.1 We

assume constant returns to scale, that is,
∑N

k=1 ωik = 1, ∀i.

The production is also subject to a fixed cost Fi. Firms maximize the profit function

maxπit = pityit −
N∑
k=1

pktxikt − witlit −Fi,

where pit represents time t product i price.2

Let Rit = pityit denote firm’s revenue in country i. The first order conditions imply

τiωikRit = pktxikt, (1)

ςiRit = witlit. (2)

Thus, the profit function becomes

πit = (1− τi − ςi)Rit −Fi.

Households. Households in each country k consume the final product produced by the domes-

tic economy. They maximize the following log-utility function

maxU(ck,t+s) = Et

(
∞∑
s=0

δs log(ck,t+s)

)
.

Assume that labor supply is fixed and equals to the population size of the country, l̄k.

1The labor component is not important in our framework and we include it solely for descriptive purposes as
the only primary source of production, in line with the extant literature. Economically, this inclusion ensures that
production is not perceived as originating from ”nowhere.”

Also note that the production process utilizes its own output as an input, thus creating a ”catch-22” scenario. This
practice is common in theoretical network literature to simplify the model, as the same conclusions can be drawn
using a model that employs inputs from previous time periods: see, among others, Carvalho (2014) or Acemoglu et al.
(2016).

2Fixed costs do not hold significance in our scenario; however, they provide flexibility to our model. Specifi-
cally, they guarantee solutions for production functions beyond Cobb-Douglas. We also do not explicitly designate a
numeraire good, but all prices can be considered as denominated in the currency of a single country, thus implicitly
factoring in exchange rates.
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There is a cash-in-advance constraint for consumption goods:

pktckt = Mkt, (3)

where Mkt is country k time t money supply. However, intermediate inputs are paid after the

production process through trade credit.

There are various channels through which monetary policy can induce real effects. In this

paper, we adopt the approach of limited financial market participation, following, for instance,

Grossman and Weiss (1983) or Alvarez et al. (2002). Compared to price or wage rigidities, as,

e.g., in Ozdagli and Weber (2019) or di Giovanni and Hale (2022), limited market participation

yields more realistic interest rate dynamics (refer to Occhino (2004) for a thorough comparison of

different mechanisms).

The model distinguishes two types of households, traders and non-traders, and segments the

financial market in the sense of excluding non-traders from it. The traders’ share of the population

is χk ∈ (0, 1). The central bank conducts monetary policy through open market operations by

trading quantity bkt of one-period nominal bond paying one at maturity in exchange for money at

the price of qkt.

Households receive wage incomes, profits, and fixed-cost transfers from firms (evenly dis-

tributed across households), but they purchase goods before receiving their incomes. The budget

constraint for traders is

M trader
kt = M trader

k,t−1 + bk,t−1 + wktl̄k + πkt + Fk − pktctraderk,t − qktbkt.
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The cash-in-advance constraint for traders is

pktc
trader
kt + qktbk,t = M trader

kt−1 + bk,t−1.

To simplify the analysis, non-traders are assumed to spend their entire cash balance on consump-

tion goods. The budget and cash-in-advance constraints for non-traders are

pktc
non−trader
kt = Mnon−trader

k,t−1 ;

Mnon−trader
k,t−1 = wk,t−1l̄k + πk,t−1 + Fk.

Open market operations can be conducted using one of the two methods, targeting either (1) the

bond price qkt and clearing the bond market with the equilibrium quantity of bkt or (2) trade quan-

tity bkt and clearing the market with the equilibrium price qkt. Either way, open market operations

affect the quantity of money circulated in the economy following bkt−1 − qktbkt = ∆Mkt.

The optimal level of good i traders consume follows

ctraderkt =
wk,t−1l̄k + πk,t−1 + Fk + ∆Mkt/χk

pkt
=

(1− τk)Rk,t−1 + ∆Mkt/χk
pkt

.

The optimal level of good i non-traders consume follows

cnon−traderkt =
wk,t−1l̄k + πk,t−1 + Fk

pkt
=

(1− τk)Rk,t−1

pkt
.

Goods market clearing condition is

ykt = ckt +
∑
i

xikt (4)

The cash-in-advance constraint for consumption goods (Equation 3) delivers pktckt = Mkt.
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Thus, substituting Equation 2 into 4 gives,

Rkt = Mkt +
∑
i

τiωikRit. (5)

In matrix form

R = (I −W ′D(τ))−1M, (6)

where D denotes diagonal matrices, and W has the (i, k)th entry of ωik.

2.2 Global Monetary Policy Coordination

While central banks typically formulate monetary policies based on their respective domestic eco-

nomic conditions, there tends to be a strong international correlation in policy rates, as illustrated,

for example, in Figure 1.3 In our theoretical framework, we explicitly account for this synchro-

nization, but delving into its sources is beyond the scope of our study. Nonetheless, there are

several plausible explanations for this behavior. For instance, in a conventional framework like

Taylor (1993) rule, macroeconomic factors such as output growth and inflation tend to exhibit high

cross-country correlations. Additionally, interest rate differentials among nations can result in cap-

ital outflows (as suggested by Haynes, 1988), which can motivate central bankers to broadly align

their interest rate policies with those of other countries.

Assume that ∆Mkt follows an AR(1) process with ∆M̂kt = θk∆M̂k,t−1+εkt and εt = τuW
′
uεt+

ut, where εt represents a vector of εkt . Denote Θu = [I − τuW ′
u]
−1. Thus, εt = Θuut and the vector

of ∆M̂kt follows

∆M̂t = D(θ)∆M̂t−1 + Θuut. (7)

3See also, e.g., “Comovements in monetary policy – Revealing international correlations with FRED.” 6 June
2019, The FRED Blog, among many other references.
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Figure 1: Comovements in Monetary Policy
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2.3 Equity and Bond Pricing

The stochastic discount factor is the ratio of traders’ marginal utilities across time periods:

SDFkt+1 = δ
ctraderkt pkt
ctraderk,t+1 pk,t+1

.

The bond price is an expectation of a stochastic discount factor. Given the money supply

process:

qkt = Et(SDFkt+1) = δ
Mk,t + ( 1

χk
− 1)∆Mkt

Mk,t + θk
χk

∆Mk
t

.

When χk < 1 − θk, a positive money supply shock increases bond price and, thus, decreases

nominal interest rate.

Each country’s stock market consists of that country’s only firm. The market value of country

i firm with profit stream πi,t is

Vit = Et

(
∞∑
s=0

SDFi,t+sπi,t+s

)
.

9



We can log-linearize and get

V̂t = SMM̂t + S∆M∆M̂t, (8)

where

SM = D((1− δ)−1V̄ −1)D((1− τ − ς)R̄)SRM ,

S∆M = D((1− δθ)−1)[D(δψ) +D(δθ)SM ].

with SRM ≡ [D(R̄)−W ′D(τR̄)]−1D(M̄)M̂t and D(ψ) denoting a diagonal matrix with diagonal

element ψk ≡ 1−θk−χk

χk
. Steady state values are labeled with bars. See Appendix A for proofs.

Thus, the immediate reaction of stock prices to a monetary policy surprise is

V̂t − Et−1(V̂t) = (SM + S∆M)Θuut (9)

The bond price reaction is simply

Q̂t − Et−1Q̂t = D(ψ)Θuut. (10)

Spatial Panel Regressions. For ease of exploration, we assume that countries are homoge-

neous at the steady state. This allows the reactions of asset prices to monetary policy shocks to be

written in forms of spatial panel models.

If the spatial terms for trade and monetary policy coordination are the same, i.e., Wu = W and

τ = τu, then equations (9) and (10) can be written as

∆V̂t ≡ ∆V̂t − Et−1(V̂t) = µ1W
′∆V̂t + µ2∆Q̂t + µ3ut, (11)

∆Q̂t ≡ Q̂t − Et−1Q̂t = µ4W
′∆Q̂t + µ5ut, (12)
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On the other hand, in a more general case, where Wu 6= W , we have

∆V̂t = µ1W
′∆V̂t + µ2∆Q̂t + µ3[I + τuW

′
u − τW ′]ut + h.o.t. (13)

∆Q̂t = µ4W
′
u∆Q̂t + µ5ut, (14)

where h.o.t. are higher order terms. Proofs are provided in the Appendix A.

Notably, equations (11) - (14) provide spatial panel data specification for the empirical regres-

sion in the subsequent sections. Money supply shocks (ut) have a triple impact: they directly

influence equity prices (∆V̂t), operate indirectly through the network W ′, and through the interest

rate channel ∆Q̂t. Furthermore, the model suggests that changes in bond yields are unaffected by

equity performance.

3 Simultaneous Spatial Panel Data Model

3.1 Simultaneous Spatial Panel Data Model Specification

In the following discussion, we describe the spatial panel data specification used to decompose

the reaction of equity prices to monetary policy shocks into its direct, network, and interest rate

effects. In keeping with the theoretical framework, our econometric model is given by

Stock: ∆Sit = ρ1

N∑
j=1

ωij1 ∆Sjt + γ1∆Bit + β1νt + λ
′

ift + α1i + ε1it, (15)

Bond: ∆Bit = ρ2

N∑
j=1

ωij2 ∆Bjt + γ2∆Sit + β2νt + φ
′

ift + α2i + ε2it, (16)
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where νt is the monetary policy shock.4 ∆Sit is the change in the local equity index of country i.

∆Bit is the yield change in country i’s government bonds. The first term on the right hand side of

both (15) and (16) captures the network effect, where Wk (k = 1, 2) represents the pre-specified

weighting matrix, the (i, j)th entry of which is wijk and a measure of the strength of the link be-

tween countries i and j. The spatial parameter ρ1 (and ρ2) measures the interconnectedness in

the global economic network, the magnitude of which indicates the average strength of network

effects. The second term (γ1) captures the interest rate effect of monetary policy shocks on equity

prices. The fourth term is the so-called interactive fixed effect, which is a generalized version of

additive fixed effects that can control for potential cross-sectional correlations as well as unob-

served heterogeneity (e.g, Pesaran, 2006, Bai, 2009, Bai and Li, 2014, Ando and Bai, 2015, Ando

and Bai, 2016, or Li et al., 2020). Specifically, ft is an r-dimensional vector of common shocks,

termed the common factor, which can affect all countries simultaneously; λi and φi are the corre-

sponding r-dimensional vectors of unobservable heterogeneous responses to the common shocks,

termed the factor loadings; the number of common factor r could be larger than one when multiple

common factors appear. α1 and α2 represent country fixed effects. Finally, the error terms ε1it and

ε2it are assumed following ε1it ∼ (0, σ2
1i) (mean zero and variance σ2

1i) and ε2it ∼ (0, σ2
2i). As in

the real world, where the volatility of the equity or bond markets varies from country to country.

Model (15) and (16) can be rewritten into a matrix form

∆St = ρ1W1∆St + γ1∆Bt + β11Nνt + Λft + α1 + ε1t, (17)

∆Bt = ρ2W2∆Bt + γ2∆St + β21Nνt + Φft + α2 + ε2t, (18)

4Our spatial panel data model contains no dynamic features, because the analysis is an event study which focuses
on a tight-window reaction around the FOMC announcements. The FOMC only schedules eight meetings per year,
one about every six weeks. Thus, adding the dynamic feature may complicates our analysis unnecessarily.
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where ∆St = (∆S1t,∆S2t, · · · ,∆SNt)′, Λ = (λ1, λ2, · · · , λN)′, α1 = (α11, α12, · · · , α1N)′, and

ε1t = (ε11t, ε12t, · · · , ε1Nt)′; ∆Bt,Φ, α2, and ε2t are defined similarly. Finally, 1N is an N × 1

vector of ones.

Given the observations of ∆Sit and ∆Bit, νt and the pre-specified weights W1 and W2, we use

a quasi-maximum likelihood estimation approach to estimate parameters (ρ1, ρ2, γ1, γ2, β1, β2), the

factors (ft) and loadings (λi, φi), and the variances of the error terms (σ2
1i, σ

2
2i), with i ∈ {1, · · ·N},

following Lu (2022), see Appendix B for details.

3.2 Effect Decomposition

Having estimated the model, we further develop an approach to decompose the total monetary

policy shock effect into direct, network, and interest rate effects. Lu (2022) proposes the estimation

method, but not an effect decomposition method, which we develop here.

3.2.1 The Direct and Network Effects

Equations (17) and (18) can be rewritten as

∆St = β1Θ11Nνt + γ1Θ1∆Bt + Θ1Λft + Θ1α1 + Θ1ε1t, (19)

∆Bt = β2Θ21Nνt + γ2Θ2∆St + Θ2Φft + Θ2α2 + Θ2ε2t, (20)

where

Θ1 ≡ (I − ρ1W1)−1 = I + ρ1W1 + (ρ1W1)2 + · · · , (21)

Θ2 ≡ (I − ρ2W2)−1 = I + ρ2W2 + (ρ2W2)2 + · · · , (22)
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where I is an N × N identity matrix. The first term on the right hand side of equation (19),

β1Θ11Nνt, represents the direct and network effects. The second term, γ1Θ1∆Bt, represents the

interest rate effect in the equity regression. We can further decompose the first term into the direct

effect and the network effect separately based on partial derivatives, following Pace and LeSage

(2014). The direct effect is captured by the diagonal elements of the matrix βiΘi, which estimates

the response of returns to shocks initiated in the same country. The network effect is captured by the

off-diagonal elements of the matrix βiΘi, which captures the spillovers through global economic

networks.

Consider a two-country example. The reaction of stock prices follows∆S1t

∆S2t

 = β1

Θ11
1 Θ12

1

Θ21
1 Θ22

1


νt
νt

 + other terms

= β1

Θ11
1 0

0 Θ22
1


νt
νt


︸ ︷︷ ︸

direct

+ β1

 0 Θ12
1

Θ21
1 0


νt
νt


︸ ︷︷ ︸

network

+ other terms (23)

where ∆Skt denotes Country k’s stock return (k = 1, 2); Θij
1 denotes the (i, j)th entry of matrix

Θ1. Other terms in Equation (23) include terms independent of the shock νt and terms controlling

for the interest rate effects. Thus, the reaction of stock price of country 1 is

∆S1t = β1Θ11
1 νt︸ ︷︷ ︸

direct

+ β1Θ12
1 νt︸ ︷︷ ︸

network

+ other terms. (24)

β1Θ11
1 captures the direct reaction of stock price of country 1 to the monetary policy shock.

The effect is direct in the sense that it reflects the reactions of stock returns to shocks initiated in

the same country.

β1Θ12
1 measures the reaction of stock price of country 1 to the monetary shock through the
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network structure. The network effect includes the reactions of country 1 to shocks initiated in

country 2, captured by β1Θ12
1 = β1[ρ1W1 +(ρ1W1)2 + · · · ]12. The first two terms of this expression

can be explained as follows. If, for example, a monetary policy expansion in country 2 increases

the demand for goods there, the first order effect captures its need for more intermediate inputs

from country 1, estimated by β1ρ1W
12
1 . The higher-order spillover effects include, in addition, the

reaction of country 1 to the increased demand from country 2 that has been triggered by country

1’s first-order reaction, captured by β1[(ρ1W1)2]12.5

3.2.2 The Total and Interest Rate Effects

We can rewrite Equations (17) and (18) as

∆St = Ξ1 [β1Θ1 + β2γ1Θ1Θ2]1Nνt + Ξ1[Θ1Λ + γ1Θ1Θ2Φ]ft

+Ξ1Θ1α1 + γ1Ξ1Θ1Θ2α2 + Ξ1Θ1ε1t + γ1Θ1Θ2Ξ1ε2t, (25)

∆Bt = Ξ2 [β2Θ2 + β1γ2Θ2Θ1]1Nνt + Ξ2[Θ2Φ + γ2Θ2Θ1Λ]ft

+Ξ2Θ2α2 + γ2Ξ2Θ2Θ1α1 + Ξ2Θ2ε2t + γ2Ξ2Θ2Θ1ε1t, (26)

where Θ1 and Θ2 are defined in equations (19) and (20); and

Ξ1 ≡ [I − γ1γ2Θ1Θ2]−1 = I + γ1γ2Θ1Θ2 + (γ1γ2Θ1Θ2)2 + · · · (27)

5While our approach of the direct and network effect decomposition is based on Pace and LeSage (2014), there
is an alternative decomposition approach based on Acemoglu et al. (2016). The approach of Acemoglu et al. (2016)
implies the direct effect can be captured by βiI and the higher-order network effect captured by βi(ρ1Ω1 + ρ2

1Ω2
1 +

· · · ). The direct effect estimates the direct response to the shock, whereas the network effect contains all the higher-
order terms. Thus, the network effect captures the spillovers through global economic networks, whereas the direct
effect is independent of the network structure. Thus, in the two-country example, β1 captures the direct effect, and
[(Θ11

1 − 1) + Θ12
1 ]β1 captures the network effect. In our empirical estimation, we find that the two approaches yield

similar decomposition results. Thus, we report only the results of decomposition following Pace and LeSage (2014).
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Ξ2 ≡ [I − γ2γ1Θ2Θ1]−1 = I + γ2γ1Θ2Θ1 + (γ2γ1Θ2Θ1)2 + · · · . (28)

The first terms on the right hand side of Equations (25) and (26) capture the total effect. The total

effect includes both the direct and network effects captured by βiΘi, i ∈ {1, 2}, as well as the

interest rate effect.

The following expression of the total effect presents the direct, network and interest rate effects

separately:

∆S = β1diag(Θ1)︸ ︷︷ ︸
direct

+ β1(Θ1 − diag(Θ1))︸ ︷︷ ︸
network

+ Ξ1[β1Θ1 + β2γ1Θ1Θ2]− β1Θ1︸ ︷︷ ︸
interest rate

,

∆B = β2diag(Θ2)︸ ︷︷ ︸
direct

+ β2(Θ2 − diag(Θ2))︸ ︷︷ ︸
network

+ Ξ2 [β2Θ2 + β1γ2Θ2Θ1]− β2Θ2︸ ︷︷ ︸
interest rate

,

where diag() extracts the diagonal of the matrix in the parenthesis. We summarize and present the

equations for the effect decomposition in Table 1.

Table 1: Effects Decomposition

Stock Bond

(a) Effects

Total ∆S ≡ Ξ1 [β1Θ1 + β2γ1Θ1Θ2] ∆B ≡ Ξ2 [β2Θ2 + β1γ2Θ2Θ1]
Direct DS ≡ β1diag(Θ1) DB ≡ β2diag(Θ2)
Network NS ≡ β1(Θ1 − diag(Θ1)) NB ≡ β2(Θ2 − diag(Θ2))
Interest rate SS ≡ ∆S −Θ1β1 SB ≡ ∆B −Θ2β2

(b) Average effects

Average total ∆̄S ≡ 1
N

∑N
i=1

∑N
j=1 ∆ij

S ∆̄B ≡ 1
N

∑N
i=1

∑N
j=1 ∆ij

B

Average direct D̄S ≡ 1
N

∑N
i=1D

ii
S D̄B ≡ 1

N

∑N
i=1D

ii
B

Average network N̄S ≡ 1
N

∑N
i=1

∑N
j=1N

ij
S N̄B ≡ 1

N

∑N
i=1

∑N
j=1N

ij
B

Average interest rate ∆̄S − D̄S − N̄S ∆̄B − D̄B − N̄B

Notes: The average total, direct, network and interest rate effects, are defined as the sum of all elements in
the corresponding effect matrix then divided by the number of countries in the sample. Aij represents the
(i, j)th element of matrix A.
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Consider the previous two-country example. The reaction of stock price can be written as∆S1t

∆S2t

 = β1

Θ11
1 0

0 Θ22
1


νt
νt


︸ ︷︷ ︸

direct

+ β1

 0 Θ12
1

Θ21
1 0


νt
νt


︸ ︷︷ ︸

network

+S

νt
νt


︸ ︷︷ ︸
interest rate

+other terms, (29)

with

S =

Ξ11
1 Ξ12

1

Ξ21
1 Ξ22

1


β1

Θ11
1 Θ12

1

Θ21
1 Θ22

1

+ β2γ1

Θ11
1 Θ12

1

Θ21
1 Θ22

1


Θ11

2 Θ12
2

Θ21
2 Θ22

2


− β1

Θ11
1 Θ12

1

Θ21
1 Θ22

1



Other terms in equation (29) include terms independent of the shock νt. The interest rate effect

captures that the stock prices respond to νt shocks through the reactions of bond yields. For

example, the reaction of B1 to monetary policy shock νt in Country 1 affects S1 through β2γ1.

3.2.3 Average Effects

Finally, we define four scalars to measure the average total, direct, network and interest rate effects,

which are defined as the sum of all elements in the corresponding effect matrix then divided by the

number of countries in the sample. Mathematical details are presented in Panel (b) of Table 1. In

our empirical analysis, we report the average effects both in levels and in percentage of the total

effect.

4 Data

Monetary Policy Shock. Following Nakamura and Steinsson (2018), we use tick-by-tick data

for federal funds futures and eurodollar futures, obtained from the Chicago Mercantile Exchange

Group, to construct the U.S. monetary policy shock. In particular, we construct the monetary policy
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shock νt as the first principal component of the change in five expected interest rates including the

federal funds rate and the eurodollar rates at various horizons.6 We calculate the implied interest

rate difference between the last trade that occurred more than 10 minutes before and the first trade

that occurred more than 20 minutes after the FOMC announcement. We obtain the dates and times

of the FOMC meetings up to 2014 from Gurkaynak et al. (2005) and Nakamura and Steinsson

(2018) and the information about the remaining FOMC meetings from the Federal Reserve Board’s

website.7 The shock νt is scaled such that its effect on the one-year Treasury yield is 100 basis

points.8 The advantage of using this approach to construct monetary policy shocks is that it extracts

variations in both short and longer-term yields. Our baseline sample contains 87 observations of

monetary policy shocks for the period from 2007/6/28 - 2018/3/21. The sample is determined by

the availability of the network and asset pricing data, as we will discuss next. Figure 2 plots the

constructed monetary policy surprises with the sample used in our benchmark analysis colored in

dark blue. Although our sample is somewhat constrained by data availability, our monetary policy

shocks closely resemble those that occurred in the late 1990s and early 2000s.

Equity Price and Bond Yield. The responses of the local stock market indexes and gov-

ernment sovereign bond yields to the U.S. monetary announcements are constructed using daily

data obtained from Bloomberg.9 Specifically, we measure the percentage changes in stock mar-

ket indexes and the yield changes in sovereign bonds before and after the U.S. FOMC meetings.

6The variables include the change in the expected federal funds rate over the remainder of the month in which the
FOMC meeting occurred and at the time of the next scheduled meeting and the change in the expected eurodollar rates
at the horizons of two, three, and four quarters in the future. The construction method follows that of Nakamura and
Steinsson (2018).

7FOMC meeting information website: http://www.federalreserve.gov/monetarypolicy/fomccalendars.htm
8In the rest of the paper, we will refer to monetary policy shocks by the number of basis points they affect the

one-year Treasury yield. For example, a monetary policy shock that impacts the one-year treasury yield by 10 basis
points will be labeled as a 10 basis point monetary policy shock.

9We use a daily window to construct asset price responses instead of a 30-minutes window, due to data availability.
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Figure 2: Monetary Policy Surprises
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Our primary results are based on 10-year government bonds. This choice is influenced by Weber

(2018), who estimated that the average equity cash flow duration in the US is 18.77 years. The

10-year maturity aligns closely with the availability of liquid bonds across all countries, as 20-year

bonds are only accessible in select countries and often less liquid. Nevertheless, in Section 5.3

(Table 4), we provide additional robustness checks with varying bond maturity choices. In theory,

we could include multiple bond maturities in our empirical specification, but this would further

complicate an already intricate numerical optimization problem.

Global Network. The international topology can be approximated in various ways. We use

trade flows to construct the spatial matrix W1. The IMF Direction of Trade Statistics (DOTS) pro-

vides the value of merchandise exports and imports on bilateral level for the construction of the

trade network. We use capital flows to approximate W2. The IMF Coordinated Portfolio Invest-

ment Survey (CPIS) provides information on the amount of assets issued by all partner countries

that was held by each of the countries participating in the survey. The data includes cross-border

portfolio investment holdings of equity securities, long-term debt securities, and short-term debt
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securities listed by country of the issuer’s residence. The economic concept behind this measure is

that when countries are more financially interconnected, their central banks must coordinate their

monetary policies more closely. Without such coordination, capital outflows are more likely to

occur. As this choice is less obvious than for W1, we provide robustness checks with alternative

W2 matrices.

Based on the theoretical results discussed in Section 2, the weighting matrix can be approxi-

mated using column-normalized DOTS data, with the ij-th entry measuring the exports of Country

i to Country j, or using column-normalized CPIS data, with the ij-th entry measuring Country j’s

holding of Country i’s asset. To abstract from the effect of stock and bond markets on the global

topology, we fix the weighting matrices at their 2006 values, i.e., one year before the beginning of

our sample period. We also perform robustness checks using alternative weighting matrices based

on 2019 values, which is one year after our sample ended.

Figure 3 illustrates the weighting matrices. Our sample contains 37 countries with asset prices

and network data 2007-2018.

5 Empirical Findings

We begin by presenting initial evidence from a basic panel dataset, which confirms the results

found in existing literature. Building upon that, we move on to report our primary findings using a

simultaneous spatial panel data model.
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Figure 3: Global Network

(a) Trade Network (b) Finance Network
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Note: This figure visualizes the trade and finance networks for our sample of 37 countries in 2006. The line width
indicates the relative size of flows between each pair of countries.

5.1 Panel Data Model

We first study the total effect of monetary policy shocks on international equity markets using the

following OLS panel data regression:

∆Sit = β1νt + α1i + ε1it, (30)

Table 2 reports the results. Clearly, a positive federal funds rate shock generates significant negative

effects on stock returns. A policy shock of 10 basis points would, on average, decrease stock

indexes by 1.1 percent. This magnitude is consistent with extant literature (e.g., Ehrmann and

Fratzscher, 2009, or Ammer et al., 2010).
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Table 2: Panel Data Regression Results

β1 -11.5459***
(0.8491)

Country Fixed Effects Yes
R2 0.0555
Observations 3182

Note: OLS standard errors are in parentheses.
The asterisks, ***, indicate the statistical signif-
icance at the 1% level.

5.2 Simultaneous Spatial Panel Data Model

In this section, we provide the main empirical results by running simultaneous spatial panel regres-

sions based on the implied theoretical framework in equations (15) and (16), which we reproduce

for the reader’s convenience below

Stock: ∆Sit = ρ1

N∑
j=1

ωij1 ∆Sjt + γ1∆Bit + β1νt + λ
′

ift + α1i + ε1it,

Bond: ∆Bit = ρ2

N∑
j=1

ωij2 ∆Bjt + γ2∆Sit + β2νt + φ
′

ift + α2i + ε2it.

In our main analysis, we employ two different weighting matrices: the trade network matrix

for stocks and the financial network matrix for bonds. This choice stems from our theoretical

framework, which suggests that stock markets are primarily interconnected through trade, whereas

bond markets are primarily linked through financial channels. Given our primary focus on equity

markets, we relegate the bond results to the Appendix (Table 6).

Table 3 presents our results. Following the approach of di Giovanni and Hale (2022), we ini-

tially begin with specification 1 (presented in column 1), which includes only country fixed effects.

Notably, we introduce the interest rate effect in our analysis, which proves to be both statistically

significant (Panel B) and economically substantial (Panel C), accounting for approximately 30%
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of the impact of monetary policy shocks. The economic magnitude of the interest rate effect - a

roughly 0.16% stock price drop after a 10 basis points monetary policy shock - falls in between

estimates of Bernanke and Kuttner (2005) and Nagel and Xu (2024) for the US. Most importantly,

our primary conclusion aligns very closely with di Giovanni and Hale (2022): the network effect

is dominant and its magnitude is approximately twice the magnitude of the direct effect.

Table 3: Stock Response to Monetary Policy Shocks - Simultaneous Spatial Panel Model Approach

(1) (2)
W1 Trade Trade
W2 Financial Financial

Panel A. Point Estimates

β1 -1.8707*** -2.1870***
(0.6372) (0.7454)

ρ1 0.6021*** 0.2953***
(0.0220) (0.0422)

γ1 -2.2029*** -2.5975***
(0.2625) (0.2656)

Country FE Yes Yes
Interactive FE No Yes
R2 0.2617 0.5208
Adj R2 0.0565 0.2315
Observations 2752 2752

Panel B. Effect Decomposition

Total Effect -6.7571*** -4.6686***
(1.3778) (0.9186)

Direct Effect -1.8707*** -2.2033***
(0.6610) (0.7473)

Network Effect -2.8313*** -0.9003***
(0.8419) (0.2270)

Interest Rate Effect -2.0552*** -1.5651***
(0.3394) (0.2013)

Effect Decomposition in percentages

Direct Effect 27.68% 47.19%
Network Effect 41.90% 19.28%
Interest Rate Effect 30.42% 33.53%

Note: Bootstrap standard errors computed from 1,000 bootstrap runs are
in parentheses. The asterisks, ***, correspond to statistical significance at
the 1 percent level.

Moving on to specification 2 (presented in column 2), we introduce interactive fixed effects
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into our analysis. These effects account for unobserved common shocks that may affect equity

markets differently in various countries. To justify this choice, we first conduct a test for the joint

significance of interactive fixed effects versus country fixed effects alone, following Bai (2009).

We find that interactive fixed effects (both the loadings and the unobserved factor itself) are jointly

strongly statistically significant with the p-value of less than 1%. The methodology of Bai (2009)

also indicates that the optimal number of interactive fixed effects is one.

With the significance of interactive fixed effects established, the results in specification 2 di-

verge substantially from those in specification 1. The direct effect now emerges as the clear dom-

inant factor, accounting for 47% of the overall impact, while the network effect and interest rate

effect contribute around 19% and 34%, respectively.

Note that Table 3 is aligned with our theoretical framework, encompassing only direct, net-

work, and interest rate effects. However, as outlined in Section 2.3, the model is solved using

log-linearization, thereby excluding the risk premium component.10 We can estimate the risk pre-

mium component by comparing the total effect of the monetary policy shock in Table 2 with the

combined effect of the three aforementioned effects in Table 3: 11.5459 - 4.6686 = 6.8773 (equiv-

alent to approximately a 0.69% impact on the stock market for a 10 basis points monetary policy

shock), or 59% of the monetary policy shock total impact in percentage terms. It is important

to recognize that these calculations are approximations, because solving the model exactly would

introduce nonlinear terms. These terms could impact both the overall magnitude of the effect and,

by covarying with other terms, the relative contributions of different components. However, as

we use interactive fixed effects and the optimal model specification identifies only one unobserved

10Although these mechanisms are absent in our model, theoretically, monetary policy shock can affect the risk pre-
mium, for instance, by impacting risk aversion (e.g., Campbell et al., 2014) or uncertainty regarding macroeconomic
fundamentals (e.g., Song, 2017).
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interactive fixed effect, the economic significance of these terms should be rather limited. Thus,

the overall decomposition suggested by our analysis indicates that 59% of the monetary policy

shock equity impact is attributed to the risk premium effect, 2.2033
11.5459

= 19% to the direct effect,

1.5651
11.5459

= 14% to the interest rate effect, and 0.9003
11.5459

= 8% to the network effect.

Given the crucial role of interactive fixed effects in our findings, it becomes pertinent to explore

the nature of unobserved common shocks in equity markets. Our maximum likelihood methodol-

ogy allows us to estimate a common shock, which is depicted in Figure 4. While a comprehensive

examination of the nature of this shock is beyond the scope of our study, we anticipate it to be

linked to the equity premium, a component absent from both our theoretical framework and empir-

ical analysis. Although measuring the conditional equity premium is notably challenging, Goyal

et al. (2024) have demonstrated that the Chicago Board Options Exchange volatility index (VIX)

and its variants serve as effective proxies within our dataset.11 Figure 4 depicts a significant cor-

relation between our interactive fixed effect and the VIX, with a correlation coefficient of 0.36,

statistically significant at the 1% level.

5.3 Robustness Checks

In this subsection, we present several alternative estimates as robustness checks. First, we decom-

pose the three effects of monetary policy shocks on equity prices by examining the responses of

bond yields at different maturities. Table 4 displays the stock responses obtained from the simul-

taneous spatial panel model, where different bond maturities are utilized to account for the interest

rate effect. The complete results can be found in Appendix C Table 7. Statistically, the interest rate

11There is also a substantial body of theoretical literature that connects VIX and the equity premium. Notable
contributions include works by Bollerslev et al. (2009), Drechsler and Yaron (2011), and Bekaert et al. (2023), among
others.
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Figure 4: Common Factor and 0.1*VIX Index

Note: VIX is scaled by 1/10. Source: Chicago Board Options Exchange.

effect exhibits a slight downward trend across bond maturities, although its economic magnitude

stays very similar.

Second, while we focus on the trade (financial) network as the primary measure of the equity

(bond) market connection, we conduct analyses using different weighting matrices to explore the

robustness of our findings. Specifically, we explore alternative approaches by using the trade

network as a weighting matrix for both the equity and bond markets, and by applying networks

from a different year - 2019, one year after the end of our sample - versus 2006, one year before

the start of our sample in our baseline analysis.

Table 5 displays the stock responses obtained from the simultaneous spatial panel model under

different weighting matrices. The complete results can be found in Appendix C Table 8. Column

(2) shows that the findings on the relative magnitude of the effects are generally consistent with
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the benchmark specification when the trade network is used to construct both W1 and W2. There

are, however, some differences worth discussing. For instance, the combined effect of three ef-

fects explicitly present in the model is now higher: 6.9769 in specification 2 versus 4.6686 in the

benchmark specification, reducing the relative contribution of the residual risk premium effect to

approximately 11.5459−6.9769
11.5459

= 39.57%. Thus, the risk premium effect contribution in this specifi-

cation becomes essentially equal to that of the direct effect ( 4.2969
11.5459

= 37.21%). The contributions

of the interest rate effect and the network effect are now 1.1416
11.5459

= 9.89% and 1.5384
11.5459

= 13.32%,

respectively. Column (3) of Table 5 shows that the results are unaffected by spatial matrices being

constructed in 2019 versus 2006.

6 Conclusion

We examine how U.S. monetary policy shocks affect international stock markets, making two

contributions. First, in addition to the direct effects on domestic demand and the network effects

on international demand explored in existing research, we also estimate the interest rate and risk

premium effects, which we find to be economically substantial and statistically significant. Second,

we demonstrate that incorporating interactive fixed effects into our empirical analysis significantly

amplifies the importance of direct effects compared to network effects.

Our findings open up several avenues for future research. For instance, the insights gained

on the international transmission channels can be used in normative research on optimal monetary

policy in an open economy. Additionally, our framework can be applied to study other asset classes.
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Table 4: Stock Response to Monetary Policy Shocks - Various Bond Maturities

(1) (2) (3)
W1 Trade Trade Trade
W2 Financial Financial Financial
Bond maturity 5-yr 10-yr 30-yr

β1 -1.7838** -2.1870*** -0.5845
(0.8365) (0.7454) (1.0025)

ρ1 0.3221*** 0.2953*** 0.3935***
(0.0483) (0.0422) (0.0470)

γ1 -2.0486*** -2.5975*** -0.5353***
(0.2127) (0.2656) (0.1409)

Country FE Yes Yes Yes
Interactive FE Yes Yes Yes
R2 0.5199 0.5208 0.5269
Adj R2 0.2332 0.2315 0.2382
Observations 3128 2752 2610

Panel B. Effect Decomposition

Total Effect -4.2759*** -4.6686*** -1.4281
(1.0857) (0.9186) (1.4414)

Direct Effect -1.7987** -2.2033*** -0.5938
(0.8395) (0.7473) (1.0124)

Network Effect -0.8326*** -0.9003*** -0.3699
(0.3021) (0.2270) (0.4752)

Interest Rate Effect -1.6446*** -1.5651*** -0.4644***
(0.1833) (0.2013) (0.1070)

Panel C. Effect Decomposition in Percentages

Direct Effect 42.07% 47.19% 41.58%
Network Effect 19.47% 19.28% 25.90%
Interest Rate Effect 38.46% 33.53% 32.52%

Note: This table reports results of stock market responses using simultaneous spatial
panel data regressions. Bootstrap standard errors computed from 1,000 bootstrap runs
are in parentheses. The asterisks, ** and ***, correspond to statistical significance at
the 5 and 1 percent levels, respectively.
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Table 5: Stock Response to Monetary Policy Shocks - Various Spatial Matrices

(1) (2) (3)
W1 Trade Trade Trade 2019
W2 Financial Trade Financial 2019

Panel A. Point Estimates

β1 -2.1870*** -4.2735*** -2.3941**
(0.7454) (0.7676) (0.9902)

ρ1 0.2953*** 0.2676*** 0.3203***
(0.0422) (0.0362) (0.0430)

γ1 -2.5975*** -2.4514*** -2.6278***
(0.2656) (0.2390) (0.3076)

Country FE Yes Yes Yes
Interactive FE Yes Yes Yes
R2 0.5208 0.4994 0.5174
Adj R2 0.2315 0.2098 0.2279
Observations 2752 3010 2752

Panel B. Effect Decomposition

Total Effect -4.6686*** -6.9769*** -5.2907***
(0.9186) (0.9687) (1.1396)

Direct Effect -2.2033*** -4.2969*** -2.4142**
(0.7473) (0.7699) (0.9928)

Network Effect -0.9003*** -1.5384*** -1.1079***
(0.2270) (0.3367) (0.3066)

Interest Rate Effect -1.5651*** -1.1416*** -1.7686***
(0.2013) (0.1436) (0.2282)

Panel C. Effect Decomposition in Percentages

Direct Effect 47.19% 61.59% 45.63%
Network Effect 19.28% 22.05% 20.94%
Interest Rate Effect 33.53% 16.36% 33.42%

Note: Bootstrap standard errors computed from 1,000 bootstrap runs are in parenthe-
ses. The asterisks, ** and ***, correspond to statistical significance at the 5 and 1
percent levels, respectively.
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Online Appendix

A Proofs for Section 2.3

Log-linearizing SDFk,t+1 yields:

Et( ˆSDF k,t+1) =

(
1− θk − χk

χk

)
∆M̂t = ψk∆M̂kt.

Steady state ¯SDF is δ.
Log-linearizing Equation (6) yields:

R̂t = [D(R̄)−W ′D(τR̄)]−1D(M̄)M̂t.

The market value of country-i with profit stream πi,t is

Vit = Et

(
∞∑
s=0

SDFi,t+sπi,t+s

)

= πi,t + Et (SDFi,t+1Vi,t+1) .

Applying πi,t = (1− τi − ςi)Ri,t −Fi and π̄iπ̂i,t = (1− τi − ςi)R̄iR̂it, then

V̄iV̂i,t = (1− τi − ςi)R̄iR̂it + Et

(
D(δ)V̄i(V̂it+1 +D(ψ)∆M̂t)

)
,

D(V̄ )V̂t = D((1− τ − ς)R̄)R̂t + Et

(
D(δ)D(V̄ )(V̂t+1 +D(ψ)∆M̂t)

)
. (A.1)

By the method of undetermined coefficients, guess that

V̂t = SMM̂t + S∆M∆M̂t.

Applying R̂t = [D(R̄)−W ′D(τR̄)]−1D(M̄)M̂t ≡ SRMM̂t, then

D(V̄ )(SMM̂t+S∆M∆M̂t) = D((1−τ−ς)R̄)SRMM̂t+Et

(
D(δ)D(V̄ )(SMM̂t+1 + S∆M∆M̂t+1 +D(ψ)∆M̂t)

)
.

(A.2)

Applying Et∆M̂t+1 = D(θ)∆M̂t, then

D(V̄ )(SMM̂t + S∆M∆M̂t)
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= D((1−τ−ς)R̄)SRMM̂t+Et

{
D(δ)D(V̄ )

[
SMM̂t + (D(θ)SM +D(θ)S∆M +D(ψ))∆M̂t

]}
.

Matching coefficients:

D(V̄ )SM = D((1− τ − ς)R̄)SRM +D(δ)D(V̄ )SM ,

D(V̄ )S∆M = D(δ)D(V̄ )(D(θ)SM +D(θ)S∆M +D(ψ)),

so
SM = D((1− δ)−1V̄ −1)D((1− τ − ς)R̄)SRM ,

S∆M = D((1− δθ)−1)[D(δψ) +D(δθ)SM ].

Thus, the immediate reaction of stock prices to monetary policy surprise is

V̂t − Et−1(V̂t) = (SM + S∆M)Θuut (A.3)

=
[
D((1− δ)−1V̄ −1)D((1− τ − ς)R̄)SRM +D((1− δθ)−1)[D(δψ) +D(δθ)SM ]

]
Θuut.

The bond price reaction is simply D(ψ)Θuut.
Connection to reduced-form equations. From now on, we assume that R̄, τ , θk and χk are

homogeneous across countries for ease of exploration. Equation A.1 can be written as

D(V̄ )V̂t = D((1− τ − ς)R̄)R̂t + Et

(
δD(V̄ )(V̂t+1 + Q̂t)

)
where V represents stock value, Q is bond price.

D(V̄ )V̂t = D((1− τ − ς)R̄)R̂t + Et

{
δD(V̄ )

[
SMM̂t + θ(SM + S∆M)∆M̂t + Q̂t

]}
D(V̄ )V̂t = D((1− τ − ς)R̄)SRMM̂t + δD(V̄ )

[
SMM̂t + θ(SM + S∆M)∆M̂t + Q̂t

]
Apply SM = D((1− δ)−1V̄ −1)D((1− τ − ς)R̄)SRM ,

V̂t−Et−1(V̂t) =

[
D((1− τ − ς)R̄V̄ −1)

{
I + δ(1 + θ +

δθ2

1− δθ
)D((1− δ)−1)

}
SRM +

δ2θ

1− δθ
D(ψ)

]
Θuut

+δD(V̄ )[Q̂t − Et−1(Q̂t)]

Or
V̂t − Et−1(V̂t) = [D(α1)SRM +D(α2)] Θuut + δD(V̄ )[Q̂t − Et−1(Q̂t)]

withD(α1) ≡ D((1−τ−ς)R̄V̄ −1)
{
I + δ(1 + θ + δθ2

1−δθ )D((1− δ)−1)
}

andD(α2) ≡ δ2θ
1−δθD(ψ).
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Combining with the bond shock:

V̂t − Et−1(V̂t) = [D(α1)SRM +D(α3)] Θuut

with D(α3) ≡ D(α2) + δD(ψV̄ ).
If Wu is proportional to W and we define them as the master weighting matrix W ′ and Θ ≡

(I − τW ′)−1,
∆V̂t ≡ V̂t − Et−1(V̂t) = [D(α1)Θ +D(α3)] Θut

∆Q̂t ≡ Q̂t − Et−1Q̂t = D(ψ)Θut

⇒
∆V̂t = D(ρ1)W ′∆V̂t +D(ρ2)∆Q̂t +D(ρ3)ut

∆Q̂t = D(ρ4)W ′∆Q̂t +D(ρ5)ut

In other cases:
S−1
RM∆V̂t =

[
D(α1) +D(α3)S−1

RM

]
Θuut

⇒
∆V̂t = D(µ1)W ′∆V̂t +D(µ2)∆Q̂t +D(µ3)[I −D(τ)W ′]Θuut

= D(µ1)W ′∆V̂t +D(µ2)∆Q̂t +D(µ3)[I −D(τ)W ′][I −D(τu)W
′
u]
−1ut

= D(µ1)W ′∆V̂t +D(µ2)∆Q̂t +D(µ3)[I +D(τu)W
′
u −D(τ)W ′]ut + h.o.t.

∆Q̂t = D(µ4)Wu∆Q̂t +D(µ5)ut

B Likelihood function and estimation method

We estimate the simultaneous spatial panel data model using maximum likelihood method, fol-
lowing the IGPC approach proposed in Lu (2022). Let θ be the collection of all parameters we are
estimating, the log-likelihood function is given by

LogL(θ) = −T
2

ln(2π)− T

2

N∑
i=1

(lnσ2
1i + lnσ2

2i) + T · ln
∣∣Υ(ρ1, ρ2, γ1, γ2)

∣∣
−

T∑
t=1

N∑
i=1

(
∆Sit − α1i − ρ1

N∑
j=1

ωij∆Sjt − γ1∆Bit − λ
′

ift − β1∆it

)2

/σ2
1i

−
T∑
t=1

N∑
i=1

(
∆Bit − α2i − ρ2

N∑
j=1

ωij∆Bjt − γ2∆Sit − φ
′

ift − β2∆it

)2

/σ2
2i
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where N is the total number of countries, T is the total number of FOMC days included in the
sample, σ2

1i and σ2
2i are the variance for the error terms in stock and bond equations, respectively.

The term involving matrix Υ(ρ1, ρ2, γ1, γ2) is due to the simultaneous equation nature of the model,
and Υ(ρ1, ρ2, γ1, γ2) is defined as a 2N × 2N matrix, with its (i, j)th block, a 2× 2 matrix, equal
to:

Υij(ρ1, ρ2, γ1, γ2) =



[
1 −γ1

−γ2 1

]
if i = j

[
−ρ1wij 0

0 −ρ2wij

]
if i 6= j

(B.1)

C Additional Empirical Results
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Table 6: Simultaneous Spatial Panel Data Model Results - With and Without Interactive Fixed
Effects

(1) (2) (3) (4)
Asset stock bond stock bond
Weight Matrix Trade Financial Trade Financial

Panel A. Point Estimates

β1 -1.8707*** -2.1870***
(0.6372) (0.7454)

ρ1 0.6021*** 0.2953***
(0.0220) (0.0422)

γ1 -2.2029*** -2.5975***
(0.2625) (0.2656)

β2 0.3397*** 0.3327***
(0.0321) (0.0331)

ρ2 0.2479*** 0.2267***
(0.0195) (0.0184)

γ2 0.0090*** 0.0009
(0.0007) (0.0010)

Country FE Yes Yes
Interactive FE No Yes
R2 0.2617 0.5208
Adj R2 0.0565 0.2315
Observations 2752 2752

Panel B. Effect Decomposition

Total Effect -6.7571*** 0.3712*** -4.6686*** 0.4246***
(1.3778) (0.0412) (0.9186) (0.0398)

Direct Effect -1.8707*** 0.3397*** -2.2033*** 0.3336***
(0.6610) (0.0322) (0.7473) (0.0331)

Network Effect -2.8313*** 0.1120*** -0.9003*** 0.0966***
(0.8419) (0.0122) (0.2270) (0.0106)

Interest Rate Effect -2.0552*** -0.0805*** -1.5651*** -0.0056
(0.3394) (0.0176) (0.2013) (0.0063)

Panel C. Effect Decomposition in Percentages

Direct Effect 27.68% 91.51% 47.19% 78.57%
Network Effect 41.90% 30.17% 19.28% 22.75%
Interest Rate Effect 30.42% -21.68% 33.53% -1.32%

Note: Bootstrap standard errors computed from 1,000 bootstrap runs are in parentheses.
Asterisks, ***, indicate the statistical significance at the 1% level.
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Table 7: Simultaneous Spatial Panel Data Model Results - Various Bond Maturities

(1) (2) (3) (4) (5) (6)
stock bond stock bond stock bond

5-year 10-year 30-year
Weight Matrix Trade Financial Trade Financial Trade Financial

Panel A. Point Estimates

β1 -1.7838** -2.1870*** -0.5845
(0.8365) (0.7454) (1.0025)

ρ1 0.3221*** 0.2953*** 0.3935***
(0.0483) (0.0422) (0.0470)

γ1 -2.0486*** -2.5975*** -0.5353***
(0.2127) (0.2656) (0.1409)

β2 0.4460*** 0.3327*** 0.4485***
(0.0397) (0.0331) (0.0437)

ρ2 0.1805*** 0.2267*** 0.1475***
(0.0144) (0.0184) (0.0134)

γ2 0 0.0009 0
(0.0010) (0.0010) (0.0011)

Country FE Yes Yes Yes
Interactive FE Yes Yes Yes
R2 0.5199 0.5208 0.5269
Adj R2 0.2332 0.2315 0.2382
Observations 3128 2752 2610

Panel B. Effect Decomposition

Total Effect -4.2759*** 0.5442*** -4.6686*** 0.4246*** -1.4281 0.5261***
(1.0857) (0.0439) (0.9186) (0.0398) (1.4414) (0.0498)

Direct Effect -1.7987** 0.4467*** -2.2033*** 0.3336*** -0.5938 0.4491***
(0.8395) (0.0397) (0.7473) (0.0331) (1.0124) (0.0438)

Network Effect -0.8326*** 0.0976*** -0.9003*** 0.0966*** -0.3699 0.0770***
(0.3021) (0.0087) (0.2270) (0.0106) (0.4752) (0.0093)

Interest Rate Effect -1.6446*** 0 -1.5651*** -0.0056 -0.4644*** 0
(0.1833) (0.0060) (0.2013) (0.0063) (0.1070) (0.0033)

Panel C. Effect Decomposition in Percentages

Direct Effect 42.07% 82.07% 47.19% 78.57% 41.58% 85.36%
Network Effect 19.47% 17.93% 19.28% 22.75% 25.90% 14.64%
Interest Rate Effect 38.46% 0.00% 33.53% -1.32% 32.52% 0.00%

Note: Bootstrap standard errors computed from 1,000 bootstrap runs are in parentheses. The asterisks, ** and ***, corre-
spond to statistical significance at the 5 and 1 percent levels, respectively.
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Table 8: Simultaneous Spatial Panel Data Model Results - Various Spatial Matrices

(1) (2) (3) (4) (5) (6)
Asset stock bond stock bond stock bond
Weight Matrix Trade Financial Trade Trade Trade 2019 Financial 2019

Panel A. Point Estimates

β1 -2.1870*** -4.2735*** -2.3941**
(0.7454) (0.7676) (0.9902)

ρ1 0.2953*** 0.2676*** 0.3203***
(0.0422) (0.0362) (0.0430)

γ1 -2.5975*** -2.4514*** -2.6278***
(0.2656) (0.2390) (0.3076)

β2 0.3327*** 0.2424*** 0.3373***
(0.0331) (0.0305) (0.0316)

ρ2 0.2267*** 0.2892*** 0.2628***
(0.0184) (0.0205) (0.0181)

γ2 0.0009 0.0000 0.0000
(0.0010) (0.0011) (0.0009)

Country FE Yes Yes Yes
Interactive FE Yes Yes Yes
R2 0.5208 0.4994 0.5174
Adj R2 0.2315 0.2098 0.2279
Observations 2752 3010 2752

Panel B. Effect Decomposition

Total Effect -4.6686*** 0.4246*** -6.9769*** 0.3410*** -5.2907*** 0.4575***
(0.9186) (0.0398) (0.9687) (0.0394) (1.1396) (0.0425)

Direct Effect -2.2033*** 0.3336*** -4.2969*** 0.2440*** -2.4142** 0.3387***
(0.7473) (0.0331) (0.7699) (0.0306) (0.9928) (0.0317)

Network Effect -0.9003*** 0.0966*** -1.5384*** 0.0907*** -1.1079*** 0.1188***
(0.2270) (0.0106) (0.3367) (0.0133) (0.3066) (0.0146)

Simultaneous Effect -1.5651*** -0.0056 -1.1416*** 0.0000 -1.7686*** -0.0000
(0.2013) (0.0063) (0.1436) (0.0106) (0.2282) (0.0064)

Panel C. Effect Decomposition in percentage

Direct Effect 47.19% 78.57% 61.59% 71.55% 45.63% 74.04%
Network Effect 19.28% 22.75% 22.05% 28.45% 20.94% 25.96%
Simultaneous Effect 33.53% -1.32% 16.36% 0.00% 33.42% 0.00%

Note: Bootstrap standard errors computed from 1,000 bootstrap runs are in parentheses. The asterisks, ** and ***, correspond to
statistical significance at the 5 and 1 percent levels, respectively.
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